MITSuME 望遠鏡によるブレーザーの

可視光モニター観測

案西 由希

修士論文

東京工業大学 理工学研究科 基礎物理学専攻 河合研究室

学籍番号 08M01010

2010年2月12日

要旨

The blazar is a subclass of active galactic nuclei (AGN) that are characterized by large variability in the radio to gamma-ray bands, and polarization and rapid variability in the optical band. Their spectral energy distribution has two humps, the lower constructed by synchrotron emission, and the higher by inverse Compton scattering.

We have been performing automatic optical monitoring of blazars using the MITSuME Telescope, a 50 cm optical telescope equipped with a tricolor camera capable of simultaneous imaging in g', R_C , and I_C bands. With this monitoring program since January 2008, we have obtained light curves of ~ 50 blazars, among them 40 are listed in the Fermi Bright Source List and/or Fermi Point Source Catalog. For these sources, we compared the optical light curves with the publicly released Fermi light curves.

The Fermi Gamma-Ray Space Telescope, launched in 2008, has high sensitivity that made possible to study the day-to-day gamma-ray variation of blazars.

As a result, we find strong correlation between the optical and gamma-ray fluxes in 3C 454.3. On the other hand, S5 0716+71 has no gamma-ray counterpart for its optical flares. We find a lag between the optical and gamma-ray bands for the peak times of giant flare of 3C 454.3 in December 2009. Moreover, we find that the amplitudes of optical variability of flat-spectrum radio quasars (FSRQs) tend to be larger than those of high-frequency peaked blazars (HBLs).

In some blazars, it is suggested that the thermal component originating from the accretion disk is comparable or larger than the synchrotron component in the optical emission. Thermal emission component of this kind is a significant element for deriving the physical parameters from the spectral energy distribution. In this study, we find indication of the thermal emission in the optical band for blazars obtained by MITSuME telescope. In addition, the timescale of variability is a one of the characteristic parameters and related to the size of the emission region. We attempt to obtain the timescale of variability using the structure function analysis.

目 次

第1章	Introduction	12
1.1	ブレーザー (Blazar)	12
	1.1.1 Blazar Sequence	13
	1.1.2 Classification	13
	1.1.3 Polarization	14
1.2	Variability Amplitudes	14
1.3	Discrete Correlation Function	15
1.4	Structure Function	16
	1.4.1 Properties of Structure Function	16
	1.4.2 Structure Function Analysis	18
第2章	MITSuME 望遠鏡	19
2.1	明野望遠鏡の仕様....................................	19
2.2	自動スケジュール観測	22
2.3	光度曲線の作成	22
2.4	解析結果表示ページ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	23
第3章	Fermi 衛星	27
3.1	Large Area Telesope (LAT)	27
3.2	Fermi Public Data	29
	3.2.1 Database table	29
第4章	Observation	34
4.1	Observation list	34
第5章	Analysis	38
5.1	自動解析の流れ	38
5.2	依存ソフトウェア・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	39

5.	.3	FITS	40
5.	.4	自動解析スクリプト	41
5.	.5	フレームの選別	41
		5.5.1 Fits ヘッダー	41
		5.5.2 フレーム選別の条件	42
5.	.6	ダークフレームの作成	44
5.	.7	フラットフレームの作成	44
		5.7.1 マスク有りフラットフレームの作成	46
5.	.8	バッドピクセルマスクフレームの作成	47
5.	.9	リダクションと重ね合わせ.............................	48
5.	.10	相対測光	49
		5.10.1 Aperture photometry	52
		5.10.2 PSF Photometry	54
5.	.11	Galactic Extinction	54
5.	.12	等級から flux への変換	55
5.	.13	Estimation of Host Galaxy	55
笛でき	辛	Decult	50
第0 4	早 1	nesun 可相坐 light curve	50
0.	.1		90
			50
		6.1.1 DA 055	58
		6.1.1 DA 055	58 60
		6.1.1 DA 055	58 60 62
		6.1.1 DA 055	58 60 62 64
		6.1.1 DA 055	 58 60 62 64 66 68
		6.1.1 DA 055	 58 60 62 64 66 68 70
		6.1.1 DA 055	 58 60 62 64 66 68 70 50
		6.1.1 DA 055	 58 60 62 64 66 68 70 72 74
		6.1.1 DA 055	 58 60 62 64 66 68 70 72 74
	2	6.1.1 DA 055	 58 60 62 64 66 68 70 72 74 76
6.	.2	 6.1.1 DA 055	58 60 62 64 66 68 70 72 74 76 78
6.	.2	 6.1.1 DA 055	 58 60 62 64 66 68 70 72 74 76 78 78

	6.2.3	S5 0716 $+71$
	6.2.4	OJ 287
	6.2.5	Mrk 421
	6.2.6	ON 231
	6.2.7	3C 273
	6.2.8	3C 279
	6.2.9	PKS 1502+106
	6.2.10	4C 38.41
	6.2.11	Mrk 501
	6.2.12	1ES 1959+650
	6.2.13	BL Lac
	6.2.14	3C 454.3
	6.2.15	$1ES 2344 + 514 \dots 117$
第7章	Discu	ission 120
7.1	Struct	ure Function
	7.1.1	DA 055
	7.1.2	3C 66A
	7.1.3	AO 0235+16
	7.1.4	1ES 0647+250
	7.1.5	S5 0716+71
	7.1.6	PKS 0735+17
	7.1.7	Q 0827+243
	7.1.8	OJ 287
	7.1.9	QSOB 0917+449
	7.1.10	Mrk 421
	7.1.11	4C 49.22
	7.1.12	TON 599
	7.1.13	1ES 1218+304
	7.1.14	ON 231
	7.1.15	3C 279
	7.1.16	PKS 1510-08

	7.1.17	3C 345	. 129
	7.1.18	1ES 1959+650	. 130
	7.1.19	BL Lac	. 131
	7.1.20	3C 454.3	. 131
7.2	可視光	変動と blazar sequence の関係	. 132
	7.2.1	Optical Variability against fluxes in the $R_{\rm C}$ band $\hfill \ldots \hfill \hfill \ldots \hfill \ldots \hfill \hf$. 133
	7.2.2	Optical Variability against gamma-ray fluxes	. 133
第8章	Conc	lusion	136
付録A	Light	curves	141
付録B	Refer	rence Stars	145
付録C	自動解	¥析システムの構成	157

図目次

1.1	Blazar Sequence	13
1.2	Shape of Structure Function	17
2.1	可視残光の自動観測の流れ..............................	19
2.2	明野望遠鏡	20
2.3	波長帯域と透過率・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	20
2.4	3 色同時撮像カメラ	21
2.5	パトロール観測システム構成図	23
2.6	自動作成される 3C 454.3 の light curve	24
2.7	自動作成される 3C 454.3 の color index	24
2.8	解析結果ページ	25
2.9	解析結果ページ	26
3.1	Fermi Instruments	27
3.2	Browse interface specific to Fermi	32
5.1	FITS 画像	40
5.2	WCSMATCH と天体検出数の違い	42
5.3	BG-LEVEL による天体検出数の違い	43
5.4	FWHM-AVG と星像が流れているフレームの関係	44
5.5	WCSMATCH と BG-LEVEL の時間変動	45
5.6	ダークフレーム	46
5.7	フラットフレーム...............................	47
5.8	aperture photmetry の概念図	52
5.9	NED で表示される galactic extinction の情報	55
6.1	light curve of DA 055	58
6.2	Spectral Energy Distribution of DA 055	59

6.3	light curve of 1ES $0647+250$	60
6.4	Spectral Energy Distribution of 1ES 0647+250	61
6.5	light curve of PKS 0735+17 \ldots	62
6.6	Spectral Energy Distribution of PKS 0735+17	63
6.7	light curve of Q $0827+243$	64
6.8	Spectral Energy Distribution of Q 0827+243	65
6.9	light curve of QSOB 0917+449	66
6.10	Spectral Energy Distribution of QSOB 0917+449	67
6.11	light curve of 4C 49.22	68
6.12	Spectral Energy Distribution of 4C 49.22	69
6.13	light curve of TON 599	70
6.14	Spectral Energy Distribution of TON 599	71
6.15	light curve of 1ES 1218+304	72
6.16	Spectral Energy Distribution of 1ES 1218+304	73
6.17	light curve of PKS 1510-08	74
6.18	Spectral Energy Distribution of PKS 1510-08	75
6.19	light curve of 3C 345	76
6.20	Spectral Energy Distribution of 3C 345	77
6.21	light curve of 3C 66A	78
6.22	correlation map between optical and gamma-ray of 3C 66A	79
6.23	Discrete Correlation Function between optical and gamma-ray of 3C $66\mathrm{A}$.	79
6.24	Spectral Energy Distribution of 3C 66A	80
6.25	light curve of AO 0235+16	81
6.26	correlation map between optical and gamma-ray of AO 0235+16	82
6.27	correlation map between optical and gamma-ray of AO $0235+16$ rel as-	
	sumed 8day delay	82
6.28	Discrete Correlation Function between optical and gamma-ray of AO $0235{+}16$	83
6.29	Spectral Energy Distribution of AO 0235+16	83
6.30	light curve of S5 0716+71 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	84
6.31	Spectral Energy Distribution of S5 0716+71	85
6.32	Spectral Energy Distribution of S5 0716+71	86
6.33	light curve of OJ 287	87

6.34	Spectral Energy Distribution of OJ 287	88
6.35	Spectral Energy Distribution of OJ 287	89
6.36	light curve of Mrk 421	90
6.37	correlation map between optical and gamma-ray of Mrk 421	91
6.38	Spectral Energy Distribution of Mrk 421	91
6.39	light curve of ON 231	93
6.40	correlation map between optical and gamma-ray of ON 231	94
6.41	Discrete Correlation Function between optical and gamma-ray of ON 231 .	94
6.42	Spectral Energy Distribution of ON 231	95
6.43	light curve of 3C 273	96
6.44	Spectral Energy Distribution of 3C 273	97
6.45	light curve of 3C 279	98
6.46	correlation map between optical and gamma-ray of 3C 279 \ldots .	99
6.47	Spectral Energy Distribution of 3C 279	99
6.48	light curve of PKS 1502+106	101
6.49	correlation map between optical and gamma-ray of PKS 1502+106	102
6.50	Spectral Energy Distribution of PKS 1502+106	102
6.51	light curve of 4C 38.41	104
6.52	correlation map between optical and gamma-ray of 4C 38.41 \ldots .	105
6.53	Spectral Energy Distribution of 4C 38.41	105
6.54	light curve of Mrk 501	107
6.55	Spectral Energy Distribution of Mrk 501	108
6.56	light curve of 1ES 1959+650	109
6.57	correlation map between optical and gamma-ray of 1ES 1959+650 \ldots .	110
6.58	Spectral Energy Distribution of 1ES 1959+650	111
6.59	light curve of BL Lac	112
6.60	Spectral Energy Distribution of BL Lac	113
6.61	light curve of 3C 454.3	114
6.62	light curve of 3C 454.3 during flare	115
6.63	correlation map between optical and gamma-ray of 3C 454.3 \ldots	116
6.64	Discrete Correlation Function between optical and gamma-ray of 3C 454.3 $$	116
6.65	Spectral Energy Distribution of 3C 454.3	117

6.66	light curve of 1ES 2344+514 \ldots 118
6.67	Spectral Energy Distribution of 1ES 2344+514
7.1	structure function against optical variability
7.2	structure function of DA 055
7.3	structure function of 3C 66A
7.4	structure function of AO 0235+16
7.5	structure function of 1ES 0647+250
7.6	structure function of S5 0716+71
7.7	structure function of PKS 0735+178
7.8	structure function of Q 0827+243 \ldots 226
7.9	structure function of OJ 287
7.10	structure function of QSOB 0917+449
7.11	structure function of Mrk 421
7.12	structure function of 4C 49.22
7.13	structure function of TON 599
7.14	structure function of $1ES1218+304$
7.15	structure function of ON231
7.16	structure function of 3C 279
7.17	structure function of PKS1510-08
7.18	structure function of 3C 345
7.19	structure function of 1ES 1959+650 \ldots 130
7.20	structure function of BL Lac
7.21	structure function of $3C454.3$
7.22	Optical variability aginst optical monochromatic luminosity
7.23	optical variability aginst gamma-rya fluxes
A.1	light curves of 1ES 0033+595
A.2	light curves of GC 0109+224
A.3	light curves of OI287
A.4	light curves of J 0805+6144
A.5	light curves of 1ES 0806+524
A.6	light curves of S5 0836+71

A.7	light	curves	of 1	ES	1011	+4	96		•	•	•	•	• •	•	•	•	•	•			•	•	•		•	. 1	142
A.8	light	curves	of 1	ES	1028	+5	11				•	•		•	•							•	•	•	•	.]	142
A.9	light	curves	of N	/Irk	180		•				•	•			•							•	•	•	•	.]	142
A.10	light	curves	of C	ON 3	325		•				•	•			•							•	•	•	•	.]	142
A.11	light	curves	of F	PG 1	222-	+21	16		•		•	•	• •		•	•		•			•	•			•]	143
A.12	light	curves	of F	PG 1	424-	+24	40		•		•	•	• •		•			•		•	•	•			•]	143
A.13	light	curves	of F	PG 1	553-	+11	13		•		•	•	• •		•			•		•	•	•			•]	143
A.14	light	curves	of 3	C 3	36.				•		•	•	• •		•			•		•	•	•			•]	143
A.15	light	curves	of C) T ()81				•		•	•	• •		•			•		•	•	•			•]	143
A.16	light	curves	of 3	C 3	71.				•		•	•	• •		•			•		•	•	•			•]	143
A.17	light	curves	of C	CTA	102	•	•				•	•	• •					•							•	. 1	144
B.1	AAV	SO Va	riabl	e St	art l	Plo	tte	r.																	•	.]	145

表目次

2.1	明野 50 cm 望遠鏡の仕様 20
2.2	CCD カメラ Alta U6 の仕様
2.3	g', R_C, I_C の有効中心波長と透過曲線の半値幅
3.1	LAT Specifications and Performance Compared with EGRET 28
3.2	Blazars of LAT Monitored Sources
3.3	LAT Monitored Sources
3.4	Fermi public data で取得できるデータ項目
4.1	観測リスト
4.2	観測リスト
4.3	観測リスト
5.1	各天体の測光方法と母銀が補正の有無
5.2	各天体の測光方法と母銀が補正の有無51
5.3	g', R_C, I_C で使用した Relative Extinction
5.4	AB 等級での α Lyr (Fukugita et al. 1996 TABLE 8 より抜粋) 55
5.5	母銀河の補正を行った天体と対応する Nilsson et al. 2009の表 56
5.6	各 bandpass での楕円銀河の色 (Fukugita et al. 1995 より抜粋) 56
7.1	structure function 解析を行った天体とパラメータ
7.2	Optical variability of observed blazars
7.3	続き
B.1	papers for reference stars of blazars
B.2	続き
B.3	続き
B.4	Reference Stars of 1ES 0033+595, GC 0109+224, 3C 66A
B.5	Reference Stars of AO 0235+16, S5 0716+71, PKS 0735+17

B.6	Reference Stars of 1ES 0806+524, Q 0827+243 (OJ 248), OJ 287 \dots 152
B.7	Reference Stars of 1ES 1011+496, 1ES 1028+511, Mrk 421, Mrk 180, TON
	599 (4C29.45)
B.8	Reference Stars of ON 325, 1ES 1218+304, ON 231, PG1222+216 (4C21.35),
	3C 273, 3C 279, PG 1424+240
B.9	Reference Stars of PKS 1510-089, 3C 345, IZW 187
B.10	Reference Stars of OT 081, 3C 371, 1ES 1959+650, CTA 102, 3C 454.3,
	1ES 2344+514

第1章 Introduction

1.1 ブレーザー (Blazar)

blazar は active galacitc neculei のサブクラスとして位置づけらており、すべてのエネ ルギーバンドでの強く速い変動、可視光から電場での振幅の大きい変動と偏光度 (> 3%) の変動という特徴がある。活動銀河核 (Active Galactic Nuclei : AGN) の統一モデルでは blazar は我々の視線方向から 10 度以内の角度に jet を出していると考えられている (Urry & Padovani 1995)。低エネルギー側にピークを持つ電波から紫外線もしくはソフト X 線 まで続く放射は主に synchrotron 放射によるものである。一方、高エネルギー側にピー クを持つ 2 つめの山は数 GeV から数百 GeV にピークを持ち、主に inverse comption scattering による放射と考えられている。

様々な blazar の観測では、数年から数時間もしくはもっと短い変動が見つかっており、 blazar によって異なる timescale を示している (See Fan et al. 2005)。 blazar の変動を理 解することは活動銀河核の研究において重要な課題の1つである。異なる timescale では 異なる振る舞いが考えられる。long term での周期的変動の可能性が OJ 287 (Sillanpaa et al. 1988) や他の blazar (Fan et al. 2002, 2007) で見つかっている。OJ 287 の周期性は 2 つめの black hole が 1 公転あたり 2 回、1 つめの black hole の accretion disk を通過する (Sillanpaa et 1988; Lehto & Valtonen 1996) という binaly black hole model で説明が可能 である。より短い timescale では、3C 66A に birght state で ~ 65days の可視光での周 期性があることが主張されている (Lainela et al. 1999)。 Mrk 501 の場合、高エネルギー 帯域のデータから 23days の周期の可能性が示唆されている (Osone et al. 2001)。 近年 273のX線データの解析から、約1時間の準周期の重大な証拠に言及してい では、3C る (Espaillat et al. 2008)。そして、おおよその周期として、AO 0235+16 で~16 days、 1ES 2321+419 で ~ 420 days の良い証拠が示されている (Rani et al. 2009)。 これは、相 対論的 jet 内で、shock wave が helical path に沿って動くことによって起こる可能性が ある (e.g. Marscher 1996)。 もしくは、Mrk 501 では accretion disk の不安定性 の可能 性もある。(Fan et al. 2008)

1.1.1 Blazar Sequence

blazar の Spectral Energy Distribution (SED) は典型的に2つの山を持つ形であること が示されている (図 1.1)。この2の山は低エネルギー側が synchrotron 放射によるもので あり、高エネルギー側が inverse comption scattering によるものであると考えられてい る。Fossati et al. 1998 は、電波の flux で 126 個のブレーザーを分類し、それぞれの平均 SED を調べている。その結果、ピーク位置の周波数とピーク flux には相関があることが 報告されている。つまり、ピーク flux が明るい blazar ほどピーク位置の周波数が低いと いう傾向があり、この傾向のことを blazar sequence と呼んでいる。また、高エネルギー 側の成分のピーク周波数は、低エネルギー側の成分のピーク周波数と関係があるというこ とと、bolometric luminosity が増加すると、高エネルギー側と低エネルギー側の成分の比 も増加するという傾向も報告されている。

図 1.1: 平均した各 blazar クラスの Spectral Energy Distribution (Fossati et al. 1998)

1.1.2 Classification

blazar には大きく分けて Flat Spectrum Radio Quasor (FSRQ) と呼ばれるグループ と BL Lac と呼ばれるグループがある。FSRQ は電波のスペクトルに輝線が見られない Quasar タイプの blazar であり、BL Lac は blazar BL Lac のようなスペクトルを持つ blazar のことである。さらに BL Lac グループには、SED の2つの山のピーク周波数が 高いHigh frequencey peaked BL Lac (HBL) と Low frequency peaked BL Lac (LBL) と いう分類がある (Ghisellini et al. 1998; Fossati et al. 1998)。

1.1.3 Polarization

blazar には偏光度による分類も提唱されている。偏光度が高い ($\gtrsim 10\%$) blazar は High Plarization Quasor (HPQ) と分類されており、3C 454.3 や S5 0716+71 などがこのグルー プに入る。一方、偏光度がより小さい ($\sim 3\%$) blazar は Low Polarization Quasor (LPQ) と分類されており、このグループには Q 0827+243 や 4C 38.41 などがある (Ghisellini et al. 1998)。

1.2 Variability Amplitudes

天体の明るさがどの程度変動しているのかを調べるには、変動の大きさを定量的に表 す必要がある。Variability Amplitude *F_{var}* は変動の振幅の和を平均の flux で規格化し たものであり、次の式で表される。(Vaughan et al. 2003, Edelson, Pike & Krolik 1990, Rodriguez-Pascual et al. 1997)

最初に sample variance を計算する。

$$S^{2} = \frac{1}{N-1} \sum_{i=1}^{N} (x_{i} - \bar{x})^{2}$$
(1.2.1)

ここで \bar{x} は x_i の平均値であり、Nは観測データ点の数である。

$$F_{var} = \sqrt{\frac{S^2 - \overline{\sigma_{err}^2}}{\bar{x}^2}} \tag{1.2.2}$$

ここで、 $\overline{\sigma_{err}^2}$ は以下の式で求める観測エラーの二乗平均値である。

$$\overline{\sigma_{err,i}^2} = \frac{1}{N} \sum_{i=1}^N \sigma_{err,i}^2 \tag{1.2.3}$$

個々の観測 flux の不確定性は付加的な変動として寄与するため、S²からその分を引いている。

 F_{var} は線形統計なので rms variability amplitude をパーセンテージ形式で与えることができる。

1.3 Discrete Correlation Function

Discrete Correlation Function (DCF) は時間に対して変動する 2 つのデータ間の相関 度を導くためのテクニックの1つである。そのため、可視光の light curve とガンマ線の light curve の間の相関を調べるために利用できる方法である (Edelson & Krolik, 1988)。

古典的な相関係数 Classic Correlation Function は時間に対して連続的なデータを仮定 した計算方法であるため、天文学の観測データのような時間に対して離散的なデータで は interpolation method が必要である。しかし、interpolation method を使用すると、不 確定性が大きくなる、interpolated data に結果が依存する、各観測データにどのように 重み付けするかに結果が依存する、ラグが 0 になるところに偽の相関が表れる、などの 問題点があり天文の観測データに使用するには難しい。そこで、時間に対して離散的な データ、観測点の間隔が揃っていないデータに対して相関度を計算する方法が、Discrete Correlation Function である。つまり、観測点のデータだけを使用し interpolation data を使用する必要がない。また、信頼性の高いエラーの見積りが得られ、相関エラーによる 偽の特徴を避けることができる。

我々は観測データに対して次の計算から DCF を導出した。

$$UDCF_{ij} = \frac{(a_i - \bar{a})(b_j - \bar{b})}{\sqrt{\sigma_a^2 \sigma_b^2}}$$
(1.3.1)

ここで $a_i \ge b_j$ はデータセット $a \ge b$ の各観測点である。 $\bar{a} \ge \bar{b}$ は各データセットの 平均値であり、 σ_a, σ_b は標準偏差、 e_a, e_b は観測エラーの平均値である。

$$DCF(\tau) = \frac{1}{M} \sum UDCF_{ij}(\tau)$$
(1.3.2)

ここで、 $au < t_{a_i} - t_{b_j}$ である全てのデータペアに対して和をとる。Mはビンに含まれるデータペアの数である。

各ビンの標準エラーは以下のように定義される。

$$\sigma_{DCF} = \frac{1}{M-1} \left(\sum [UDCF_{ij} - DCF(\tau)]^2 \right)^{1/2}$$
(1.3.3)

ビンサイズを小さくすると cross-correlation 曲線の分解能が高くなる。一方、ビンサイ ズを大きくすることで UDCF から DCF を求めるための平均値の精度を高くすることが できる。この2つの兼ね合いから最適なビンサイズを決定する。

DCF から物理的な情報を得るために 2 つの点に注目する。1 つはピークの位置、もう 1 点は"Shoulders" の位置 (Fig. 4 in Edelson & Krolik, 1988) である。放射領域が対称で あると仮定し、continuum power spectrum が "red"の場合、 "Shoulders" は典型的には $\tau = 0 \ge \tau = 2r/c$ に表れることが示唆されている。このことから特徴的な timescale を 求めることができる。

1.4 Structure Function

1.4.1 Properties of Structure Function

Structure Function の一般的な定義とその特徴は Rutman(1978) と Simonetti, Cordes, & Heeschen (1985) で与えられている。

ここでは、以下のように定義されている first-order structure function だけに注目する。

$$D_1(\tau) = \frac{1}{N} \sum_{k=1}^{N} [f(t+\tau) - f(t)]^2$$

=< [f(t) - f(t+\tau)]^2 > (1.4.1)

$$\sigma_1^2(\tau) \approx \frac{8\sigma_{\delta f}^2}{N} D_1(\tau) \tag{1.4.2}$$

ここで、f(t) は時間 t での flux、 τ は time lag である。

structure function の静的ランダムプロセスはプロセス $[\rho(\tau)]$ で変動が σ^2 の autocorrelation function と次のような関係がある。

$$D_1(\Delta t) = 2[\sigma^2 - ACF(\tau)]$$
 (1.4.3)

天文学的な時間系列データに対する structure function 解析とその応用は Simonetti, Cordes, & Heeschen (1985), Hughes, Aller, & Aller (1992), Press, Rybicki, & Hewitt (1992), Kawaguchi et al. (1998), and Paltani (1999) などで議論されている。不安定なプ ロセスに対しても定義されているので、structure function は autocorrelation function よ リも一般的である。

「理想的な」間隔で観測されたデータの structure function は2つの plateau とそれら を結ぶ slope の3要素から成る。図1.2 に概念図を示す。

time lag が短い場合 $(t < \tau_{min})$ 、correlation time scale は 0 なので、plateau は観測ノ イズの分散の 2 倍 $(2\sigma_{noise}^2)$ になる。一方、time lag が最も長い correlation time scale よ りも長い場合 $(t > \tau_{max})$ 、plateau の振幅は不安定性による変動の分散の 2 倍 $(2\sigma_{signal}^2)$ と 同じになる。

log(time lag)

図 1.2: 観測エラーを持ち時間間隔が理想的なデータの Structure Function の形 (Lainela et al. 1993)

slope の部分 ($\tau_{min} \leq \tau \leq \tau_{max}$) の傾きは本質的な変動に関係する物理的なメカニズム に依存する。structure function が平らになる部分 $\tau_{char} \sim \tau_{max}$ は本源的なソースの特徴 (例えば 質量やサイズ) によって決まり、重要な特徴的 timescale を表している。これは $\tau_{char} << T$ (T はモニタリング期間) の場合に調べられる。

もし、いくつかのプロセスが混ざった、もしくは周期的なプロセスがあるとすると、状況 はより複雑になるため、structure function を適切に解釈することが難しくなる。structure function の解析は、我々に power spectrum 解析に似た情報を与えてくれるが、structure function はデータが非周期的もしくはデータ点が時間にたいして不規則に分布している場合 に利点がある。フーリエ変換での power-law と structure function 解析の間にはシンプル な対応がある。もし、 $D_1(\tau) \propto \tau^{\alpha}$ なら、Fourier power spectrum は $P \propto \nu^{-(\alpha+1)}(0 < \alpha < 2)$ となる。ここで α は structure function の slope の傾き、 ν は周波数である。しかし、実 際のプロセス に対する structure function は lag に対して簡単な関数とはならない可能 性が高い。つまり、観測データによる structure function は典型的には、理論的に予測さ れる形からはずれた形になる。特に mean squared variations が 2 σ^2 オーダーになるよ うな長い timescale では、有限の観測期間による効果などでずれは顕著になる。

例えば、データの線形傾向は、最も長い timescale (例えば、観測期間など) とだいた い同じになる timescale で、人工的に structure function を急にする。そのため、長い timescale で structure function が急激な減少を表す場合がある。これらの影響への理解 は structure function で観測された特徴が本当かどうか評価するために必要である。

1.4.2 Structure Function Analysis

可視光の structure function 解析にはさまざまな方法があるが、今研究では、時間関数 として flux を用いる方法を利用した (Collier et al. 2001)。

観測された flux を $f(t_i)$, i = 1, 2, 3, ... とすると、first-order structure function は次の ように定義される。

$$S(\tau) = \frac{1}{N(\tau)} \sum_{i < j} [f(t_i) - f(t_j)]^2$$
(1.4.4)

ここで、 $t_i - t_i = \tau$ となる全てのペアに和をとる。 $N(\tau)$ はペアの数である。

第2章 MITSuME望遠鏡

MITSuME 望遠鏡は、GRB の可視残光を自動で早期追観測するために設置された、東 大宇宙線研明野観測所の可視 50cm 望遠鏡、国立天文台岡山天体物理観測所の可視 50cm 望遠鏡と赤外 91cm 望遠鏡の3台の総称である。東工大では、明野観測所の可視 50cm 望 遠鏡を行ってきており (谷津 修士論文,下川辺 修士論文,石村 修士論文,工藤 修士論 文,案西 卒業論文)、GCN アラートに対応した自動観測システムのもとで運用されている (図 2.1)。3台の望遠鏡により近赤外から可視光の、g', R_C, I_C, Z, J, H, K (図 2.3) band での多波長観測が可能である。

図 2.1: 可視残光の自動観測の流れ。衛星からの位置速報によって GRB を自動観測し、高 精度な位置情報を決定する。

2.1 明野望遠鏡の仕様

我々が運営している明野 50 cm 望遠鏡 (図 2.2) は、口径 50 cm、視野 28 分角 × 28 分 角で、gⁱ, R_C, I_C バンドの 3 色の CCD カメラ (図 2.4) を持ち、3 色同時撮像が可能であ る。望遠鏡の仕様を表 2.1 に示す。

図 2.2: 明野望遠鏡

図 2.3: 波長帯域と透過率

設置位置	
所在地	山梨県北杜市明野町東京大学宇宙線研究所付属明野観測所
座標	東経 138.4806°, 北緯 35.7866°,高度 900 m
光学式	
形式	カセグレン型反射望遠鏡
有効直径	$500 \mathrm{~mm}$
副鏡口径	$160 \mathrm{mm}$
焦点距離	$3000 \mathrm{mm}$
口径比	F6
有効視野	28 分角
観測波長	400 - 950 nm
合焦方法	副鏡の電動移動
架台	
形式	フォーク式赤道儀
駆動速度	最大 3° /sec
ドーム	
形状	半径 2 m, 半球型
1 回転時間	最速 40 sec

表 2.1: 明野 50 cm 望遠鏡の仕様

望遠鏡から入射した光をダイクロックミラーで3つの光線に分割し、g'バンド (SDSS) , R_C , I_C バンド (Johnson-Cousins) フィルターを通して各 CCD カメラに入射させること で、3色同時撮像を行うことができる。各バンドの有効中心波長と半値幅を表 2.3 に示す。

図 2.4: 3 色同時撮像カメラ。内部の 2 枚のダイクロックミラーで望遠鏡から入射した光束 を 3 方向に分ける。分割された光は各バンドのフィルターを通過し、CCD カメラに入射 する。

CCD カメラは Apogee 社製の Alta U6 である。仕様を 2.2 に示す。

1		
CCD	Kodac KAF-1001E	
Array Size	1024×1024	
Pixel Size	$24~\mu{\rm m}\times24~\mu{\rm m}$	
Imaging Area	24.58 mm \times 24.58 mm	
Linear Full Well	$550,000 \ e^-$	
Digital Resolution	16 bit	
Exposure Time	20 msec - $183 min$	
Cooling	ペルチェ素子 + 送風による冷却 (外気温 -50)
PC Interface	USB 2.0	

表 2.2: CCD カメラ Alta U6 の仕様

表 2.3: g', R_C, I_C の有効中心波長と透過曲線の半値幅

システム	バンド	有効中心波長 [Å]	透過曲線 FWHM [Å]
SDSS	g'	4858	1297
Johnson-Cousins	I_C	8785	1706
Johnson-Cousins	R_C	6930	2096

2.2 自動スケジュール観測

MITSuME 望遠鏡では GCN に対応した GRB の自動追観測およびブレーザーのパト ロール観測を行うシステムが開発されており、このシステムによって毎晩ブレーザーの観 測を行っている (案西 卒業論文)。システム構成図を図 2.5 に示す。

スケジュール観測から自動解析に至るまでの1晩の流れを以下に示す。

- 1. スケジュール観測を行い、各天体の観測データ (fits ファイル) が作成される
- 9. 明野にある PC (図 2.5 での dracula) で解析の前処理が行われる。この処理によって 座標 (RA, Dec) が計算され、SKY レベル (BG-LEVEL) や、天体がどの程度写って いるか (WCSMATCH) などが fits ヘッダーに書込まれる
- 3. 東工大へ前処理が終わった fits ファイルが転送され、データベースに登録される
- 4. 1 晩で観測されたデータが全てデータベースに登録された後、東工大側の PC (図 2.5 での tensan) で各天体ごとに自動解析が行われる

1.2.3 については、下川辺 修士論文、石村 修士論文、案西 卒業論文を参照されたい。 今研究ではそのシステムの中で、主に 4 にあたる解析処理の自動化を進め、解析結果の アクセシビリティについて改良を行った。解析は tensan という解析専用の PC で行われ ており、14時10分に前晩に観測されたデータの解析を開始する (付録 C 参照)。自動解析 については4章で述べる。

2.3 光度曲線の作成

自動解析によって求めた各天体の等級データからグラフ作成ツール gnuplot を使用し て light curve を作成している。図 2.6 に 3C 454.3 の R_C band の light curve を示す。横 軸が日付で、縦軸が等級であり、赤丸が 3C 454.3 の等級、それ以外が参照星の等級であ る。参照星のばらつきをチェックすることで、その日の観測が信頼性のあるものかどうか チェックすることができる。この light curve は毎日自動作成・更新される。また、color index $(g' - I_C)$ のグラフも作成している。図 2.7 に 3C 454.3 の color index $(g' - I_C)$ の グラフを示す。横軸が日付で、縦軸が color index である。color index が大きくなるとい うことは color が赤くなることを表しており、反対に小さくなるということは color が青 くなることを表している。

図 2.5: パトロール観測システム構成図。赤線は GRB 自動観測の流れ、青線はスケジュー ルモード観測システムの流れ、黒線は両方共通の流れである。(案西 卒業論文)

2.4 解析結果表示ページ

図 2.8 および 図 2.9 は自動解析によって生成される解析結果用ページの例である。このページでは、解析に使用したフレームおよび総数、参照星の座標および使用したカタロ

図 2.6: 3C 454.3 の自動作成される light curve (Rc band)。横軸が日付で、縦軸が等級で ある。赤丸が 3C 454.3, それ以外が参照星の等級である。

図 2.7: 3C 454.3 の自動作成される color index (g' - Rc) のグラフ。横軸が日付で、縦軸 が color index である。

グ、測光結果、解析によって作成された fits ファイルの画像、WCSMATCH, BG-LEVEL, FWHM-AVG の時間変化を見ることができる。各 fits の画像も表示されており、自動で 識別するのは難しいが解析にはふさわしくないフレームを目視で見つけることができる。

3C454.3 091223

goodfits60.list NOMAD catalog radec.list goodnum : 36 / 36

	G	R	I
dark frame	dark_G60.fits	dark_R60.fits	dark_I60.fits
flat frame	flat G.fits	flat R.fits	<u>flat I.fits</u>
bpmask frame	bpmask_G.fits	bpmask_R.fits	bpmask_l.fits
combined frame	3C454.3-G.fits	3C454.3-R.fits	3C454.3-I.fits
NCOMBINE	36	36	36
psf photometry	15.135 +/- 0.023 psfphot psfphot.log weightedmean.log	14.231 +/- 0.007 psfphot psfphot.log weightedmean.log	13.581 +/- 0.008 psfphot psfphot.log weightedmean.log
aperture photometry	15.067 +/- 0.025 aperturephot aperturephot.log weightedmean.log	14.177 +/- 0.008 aperturephot aperturephot.log weightedmean.log	13.513 +/- 0.008 aperturephot aperturephot.log weightedmean.log
light curve			

G band

R band

図 2.8: 自動解析によって生成される天体ごとの解析ページ (上部)。解析に使用したフレー ムおよび総数、参照星の座標および使用したカタログ、測光結果、解析によって作成され た fits ファイルの画像などをみることができる。

図 2.9: 自動解析によって生成される天体ごとの解析ページ(下部)。WCSMATCH, BG-LEVEL, FWHM-AVG の時間変化を見ることができる。各 fits の画像も表示されており、 自動で識別するのは難しいが、解析にはふさわしくないフレームを目視で見つけることが できる。

第3章 Fermi 衛星

2008年6月11日に打ち上げられた Fermi衛星はこれまでにない高い精度でガンマ線を 検出できるガンマ線観測衛星である。開発には日本の大学も関わっており、東工大・広島 大学などが協力している。

Fermi 衛星には GBM (GLAST Burst Monitor) と LAT (Large Area Telescope) の2つ の検出器が搭載されている。GBM と LAT を合わせた観測はガンマ線バーストを研究す る上で有力であり、特に高エネルギーガンマ線帯域での時間依存のスペクトルの研究には 非常に有用である。

図 3.1: Fermi 衛星の検出器 LAT と GBM の模式図

3.1 Large Area Telesope (LAT)

LAT は高精度のガンマ線観測を目的とした検出器でエネルギー範囲は約 20 MeV か ら 300 GeV である。Fermi のエネルギー範囲で物質と photon の最初の相互作用は pair conversion である。このプロセスは、ガンマ線と flux が 105 倍以上大きい charged cosmis rays を区別するための、ガンマ線固有のサインを提供することで、基になる測定原理の基 礎を形成する。そして、電子・陽電子ペアの軌道を再構成することによって、入射 photon の方向を決定する。

Quantity	LAT (Minimim Spec.)	EGRET
Energy Range	$20~{\rm MeV}$ - $300~{\rm GeV}$	$20~{\rm MeV}$ - $30~{\rm GeV}$
Peak Effective Area ¹	$> 8000 \text{ cm}^2$	1500 cm^2
Field of View	$> 2 \mathrm{\ sr}$	0.5 sr
Angular Resolution ²	< 3.5 ° (100 MeV)	< 0.15 °(> 10 GeV)
		5.8 ° (100 MeV)
Energy Resolution ^{3}	< 10%	10%
Deadtime per Event	$< 100 \ \mu s$	100 ms
Source Location Determination ⁴	< 0.5'	15'
Point Source Sensitivity ⁵	$< 6 \times 10^{-9} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	$\sim 10^{-7} {\rm cm}^{-2} {\rm s}^{-1}$

表 3.1: LAT Specifications and Performance Compared with EGRET

http://fermi.gsfc.nasa.gov/science/instruments/table1-1.html

1 After background rejection

2 Single photon, 68% containment, on-axis

3 1- σ , on-axis

4 1- σ radius, flux 10⁻⁷ cm⁻²s⁻¹ (>100 MeV), high |b|

5 > 100 MeV, at high |b|, for exposure of one-year all sky survey, photon spectral index -2

入射光はまず荷電粒子に高感度の非同時シールドを通過し、その後変換箔と呼ばれる 高Z物質の薄い層を通過する。光子の変換は重原子核のまわりで促進される。変換後の 電子・陽電子の軌道は、粒子追跡検出器によって測定され、そのエネルギーはカロリメー ターで測定される。LATにおけるガンマ線サインの特徴として、(1)非同時シールドで は無信号、(2)複数の追跡を追跡器の体積内の同じ場所から開始、(3)カロリメーター内 での電磁シャワー、がある。

LAT モジュールの基部は 4×4 配列の同じタワーによって構成される。各 $40 \times 40 \text{ cm}^2$ のタワーは1つの追跡器・カロリメータ・データ取得モジュールを含む。追跡検出器はシリコンストリップ検出器の 18 xy 層から構成される。この検出器技術は加速器に基づく高エネルギー物理学の応用として長い成功の歴史を持ち、高検出率 (> 99 %)、高い位置決定精度 (この設計で < $60\mu m$)、高いシグナルノイズ比 (> 20:1) などの必要性に合致している。

3.2 Fermi Public Data

Fermi 衛星で観測されたデータの一部は一般に公開されており、データは Fermi Science Support Center (http://fermi.gsfc.nasa.gov/ssc/data/access/) から取得することができ る (図 3.2)。取得できる LAT データとして、LAT Bright Source List の photon flux、 LAT Monitor Source List の 1 日積分と 1 週間積分の photon flux、LAT Point Source Catalog の photon flux と spectral index などが提供されている。加えて、flare によって 2×10^{-6} [photonscm⁻²s⁻¹] 以上に達した全ての天体は、flux が 2×10^{-7} [photonscm⁻²s⁻¹] に落ちるまで LAT Monitor Source List と同様のデータが公開される。表?? と 表?? に LAT Monitor Source List を示す。

Fermi 衛星は通常サーベイモードで毎日全天を観測しているが、天体の flux が検出閾値 を超えなかった場合は、catalog にその日のデータ項目は追加されない。公開される LAT Monitor Source List の flux は LAT Instrument Science Operations center での 'quick look' 解析から導出されたもので、flare 時の source の 多波長追観測を促進するために生 成された結果である。そのため、これらの初期見積もりの flux は系統誤差を含んでおら ず。絶対的な flux 校正は行われていない。

3.2.1 Database table

Fermi public data を提供しているデータベーステーブルは、Fermi Science Support Center (FSSC) で受信された FITS table から HEASARC によって作成されている。ASP FITS files は LAT Instrument Science Operation Center (LISOC) によって生成され、約 1週間に1回 FISOC から FSSC に転送される。

データベーステーブルは含まれる項目を 表 3.4 に示す。このうち、本研究でガンマ線の light curve を作成するのに使用した項目はMET_Start, MET_End, Flux_1_300_GeV, Flux_1_300_GeV_Err である。

Source Name	EGRET Name	Average or Min.	Galactic	Redshift	TeV
		EGRET Flux	Latitude		Source
		above $100 { m MeV}$			
		$(10^{-8}\gamma \rm{cm}^{-2}\rm{s}^{-1})$			
0208-512	3EGJ0210-5055	85.5 ± 4.5	-61.9	1.003	
0235 + 164	3EGJ0237+1635	65.1 ± 8.8	-39.1	0.94	
PKS 0528+134	3EGJ0530+1323	93.5 ± 3.6	-11.1	2.060	
S5 0716+71	3EGJ0721+7120	17.8 ± 2.0	28	0.3	
0827+243	3EGJ0829+2413	24.9 ± 3.9	31.7	0.939	
OJ 287	3EGJ0853+1941	10.6 ± 3.0	35.8	0.306	
Mrk 421	3EGJ1104+3809	13.9 ± 1.8	65.0	0.031	Yes
W Com	3EGJ1222+2841	11.5 ± 1.8	83.5	0.102	Yes
(1219+285)					
3C 273	3EGJ1229+0210	15.4 ± 1.8	64.5	0.158	
3C 279	3EGJ1255-0549	74.2 ± 2.8	57.0	0.538	Yes
1406-076	3EGJ1409-0745	27.4 ± 2.8	50.3	1.494	
H 1426+428	NA		64.9	0.129	Yes
1510-089	3EGJ1512-0849	18.0 ± 3.8	40.1	0.36	
PKS 1622-297	3EGJ1625-2955	47.4 ± 3.7	13.4	0.815	
1633 + 383	3EGJ1635+3813	58.4 ± 5.2	42.3	1.814	
Mrk 501	NA		38.9	0.033	Yes
1730-130	3EGJ1733-1313	36.1 ± 3.4	10.6	0.902	
(NRAO 530)					
$1 \text{ES} \ 1959{+}650$	NA		17.7	0.048	Yes
PKS 2155-304	3EG2158-3023	13.2 ± 3.2	-52.2	0.116	Yes
BL Lacertae	3EGJ2202+4217	39.9 ± 11.6	-10.4	0.069	Yes
(2200+420)					
3C 454.3	3EGJ2254+1601	53.7 ± 4.0	-38.3	0.859	
1ES 2344+514	NA		-9.9	0.044	Yes

表 3.2: Blazars of LAT Monitored Sources

http://fermi.gsfc.nasa.gov/ssc/data/policy/LAT_Monitored_Sources.html

Source Name	EGRET Name	RA	Declination	Galactic	Galactic
				Latitude	Longitude
4C 31.03	NA	18.2100	32.1380	128.2	-30.5
3C 66A	3EGJ0222+4253	35.6650	43.0350	140.1	-16.8
NRAO 190	3EGJ0442-0033	70.6610	-0.295000	197.2	-28.5
PKS 0454-234	3EGJ0456-2338	74.2630	-23.4140	223.7	-34.9
OFGL J0910.2-5044	NA	137.568	-50.7430	271.6	-1.9
J123939+044409	NA	189.900	4.70000	295.2	67.4
PKS 1244-255	NA	191.695	-25.7970	301.6	37.1
PKS 1454-354	NA	224.361	-35.6530	329.9	20.5
PKS 1502+106	NA	226.104	10.4940	11.4	54.6
GB6 J1700+6830	NA	255.039	68.5020	99.6	35.2
PMN J2250-2806	NA	342.685	-28.1100	23.8	-63.3

表 3.3: LAT Monitored Sources

http://fermi.gsfc.nasa.gov/ssc/data/policy/LAT_Monitored_Sources.html

Archive Search of <u>FERMI</u> and object Catalog(s)

Main Search Form > Search Form > Search Results > Choose Data Products

1. Please select one or more of the tables below.

Sort by a column in order: 1,2,3 ¹ Sort by column in reverse order: 3,2,1

Select: All	Description 少仓	Catalog⊕⊕	Data导令	Default Radius (arcmin) 歩合	Mission⊕⊕	Table Type导습
V	Fermi GBM Burst Catalog	fermigbrst	Y	30	FERMI	Object
2	Fermi GBM Trigger Catalog	fermigtrig	Y	30	FERMI	Object
2	Fermi GBM Daily Data	fermigdays	Y	***	FERMI	Observation
2	Fermi LAT Monitored Source List	fermilasp	N	10	FERMI	Object
2	Fermi LAT Point Source Catalog	fermilpsc	Y	10	FERMI	Object
2	Fermi LAT Bright Source List	fermilbsl	N	30	FERMI	Object

2. Do you want to change any of your current query selections?

Page maintainer: <u>Browse Feedback</u>

図 3.2: Fermi 衛星のデータを取得するための Archive (http://heasarc.gsfc.nasa.gov/cgibin//W3Browse/w3table.pl?Action=Detailed%20Mission&Observatory=fermi)。取得で きるデータは Fermi GBM Burst Catalog, Fermi GBM Trigger Catalog, Fermi GBM Daily Data, Fermi LAT Monitored Source List, Fermi LAT Point Source Catalog, Fermi LAT Bright Source List である。天体名、観測日などから検索でき、ブラウザで結果を表 示する他、FITS 形式や Excel 互換形式をダウンロードすることもできる。

項目名	詳細
MET_Start ¹	Mission Elapsed Time (MET) での観測開始時刻
MET_End^1	Mission Elapsed Time (MET) での観測終了時刻
Time	Universal Time (UT) での観測開始時刻
End_Time	Universal Time (UT) での観測終了時刻
Name	天体の名称
RA^2	天体の right ascension
Dec^2	天体の declination
LII	RA と Dec から導出した Galactic Longitude
BII	RA と Dec から導出した Galactic Latitude
$\rm Flux_1_300_GeV_Limit^3$	1-300 GeV band での upper limit flag
$Flux_1_300_GeV^4$	1-300 GeV band $\boldsymbol{\sigma}$ flux [photons/s/cm ²]
$Flux_1_300_GeV_Error^5$	1-300 GeV band での 1-sigma uncertainty
$\rm Flux_300_1000_MeV_Limit^3$	300-1000 MeV band での upper limit flag
$Flux_300_1000_MeV^4$	300-1000 MeV band $\boldsymbol{\sigma}$ flux [photons/s/cm ²]
$Flux_300_1000_MeV_Error^5$	300-1000 MeV band での 1-sigma uncertaint
$Flux_0p1_300_GeV_Limit^3$	0.1-300 GeV band での upper limit flag
$Flux_0p1_300_GeV^4$	0.1-300 GeV band $\boldsymbol{\sigma}$ flux [photons/s/cm ²]
$Flux_0p1_300_GeV_Error^5$	0.1-300 GeV band での 1-sigma uncertainty
Duration	MET_END - MET_START で計算される duration
$Test_Stat_0p1_300_GeV^6$	0.1-300 GeV band $\[\columnwidth \sigma \]$ flux variability $\[\column \sigma \]$ test statistic

表 3.4: Fermi public data で取得できるデータ項目

1. Mission Elapsed Time は 2001.0 からの秒数で、leap seconds は含まない

2. カタログ天体の場合はカタログに載っている値である。新天体 (ASP で名前が始まっている)の場合は、自動天体検出と位置決定ソフトウェアによって決定されており、大き い不確定性がある

3. flux が 90%-confidence limit upper limit の場合は "<" が付く

4. limit flag が "<"の場合は 90%-confidence limit flux である

5 limit flag が "<" の場合は error flag は無視でき、値は best fit から得られた formal error estimate である

6 See Mattox et al. 1996 ApJ, 461, 396.

第4章 Observation

4.1 Observation list

我々は MITSuME 望遠鏡で約 50 個のブレーザーのモニター観測を行った。観測は 2008 年1月から開始し、2010 年1月まで 2 年間の観測結果を報告する。

観測天体のリストを表 4.1 に示す。観測天体は FSRQ が 11 個、BL Lac が 27 個、それ 以外が 5 個、不明が 4 個である。BL Lac のうち HBL が 5 個、LBL が 8 個である。(1) は天体名、(2),(3) は天体の座標である。(4) は blazar の分類、(5) blazar の偏光度であ り、Ghisellini et al. 1998b, Ghisellini et al. 2009a, Abdo et al. 2009, を参照した。(6) は red shift であり、NED (NASA/IPAC EXTRAGALACTIC DATABASE)¹ で紹介されて いる値を参照した。(7) は Fermi 衛星の Bright Source List (BSL), Monitored Source List (MSL), Point Source Catalog (PSC) に載っているかどうかを表している。(8) および (9) は 明野 MITSuME 望遠鏡 (AKENO) と岡山 MITSuME 望遠鏡 (OAO) で観測が開始され た月を表している。

¹http://nedwww.ipac.caltech.edu/
Name	RA	Dec	Class	Pol	red shift	Fermi	AKENO	OAO
(1)	(2)	(3)	(4)	(5)	(9)	(2)	(8)	(6)
1ES 0033+595	00:35:52.64	+59:50:04.6	HBL		0.086	BSL, PSC	2008/06 -	I
${ m GC}~0109{+}224$	$01{:}12{:}05.82$	+22:44:38.8	BL Lac		I	BSL, PSC	2008/10 -	I
DA 055	01:36:58.59	+47:51:29.1	FSRQ	НРQ	0.859	BSL, PSC	2008/10 -	I
3C 66A	02:22:39.60	+43:02:08.0	LBL		0.444	MSL, BSL, PSC	2008/01 -	2008/09 -
AO 0235+16	02:38:38.93	+16:36:59.3	LBL		0.940	MSL, BSL, PSC	2008/02 -	ı
NGC 1275	03:19:48.10	+41:30:42.0	RG		0.018	BSL, PSC	2008/02 -	I
3C 111	04:18:21.28	+38:01:35.8	BLRG		0.0485	I	2008/10 -	I
3C 120	04:33:11.10	+05:21:15.6	BLRG	LPQ	0.033	I	2008/02 -	ı
1ES 0647 + 250	06:50:46.52	+25:03:00.0	BL Lac		0.203	PSC	2008/01 -	I
S5 0716+71	$07{:}21{:}53.45$	+71:20:36.4	LBL	НРQ	0.300	MSL, BSL, PSC	2008/01 -	I
PKS 0735+17	07:38:07.39	+17:42:19.0	LBL		0.424	BSL, PSC	2008/01 -	2008/10 -
OI 287	07:55:37.03	+25:42:39.0	BL Lac		0.444	I	2008/01 -	2008/10 -
J $0805 + 614$	08:05:18.18	+61:44:23.7	FSRQ		3.033	I	2009/01 -	I
1ES 0806 + 524	08:09:49.15	+52:18:58.7	FSRQ		0.138	PSC	2008/01 -	I
Q 0827+243	08:30:52.09	+24:10:59.8	LBL	LPQ	0.940	PSC	2008/10 -	I
S5 0836+71	08:41:24.37	+70:53:42.2		LPQ	2.172	PSC	2008/02 -	I
OJ 287	08:54:48.87	+20:06:30.6	LBL		0.306	MSL, BSL, PSC	2008/01 -	2008/10 -
QSOB 0917+449	09:20:58.46	+44:41:54.0	FSRQ		2.19	BSL, PSC	2009/01 -	ı

表 4.1: ブレーザーの観測リスト

Name	RA	Dec	Class	Pol	red shift	Fermi	AKENO	OAO
(1)	(2)	(3)	(4)	(5)	(9)	(2)	(8)	(6)
1ES 1011+496	10:15:04.14	+49:26:00.7	BL Lac		0.200	MSL, BSL, PSC	2008/02 -	I
1ES 1028 + 511	10:31:18.51	+50:53:35.9	BL Lac		0.360	PSC	2008/01 -	ı
Mrk 421	11:04:27.30	+38:12:31.8	HBL		0.031	MSL, BSL, PSC	2008/01 -	2008/12 -
Mrk 180	11:36:26.40	+70:09:27.3	BL Lac		0.0453	\mathbf{PSC}	2008/02 -	2008/12 -
$4C \ 49.22$	11:53:24.47	+49:31:09.0	FSRQ		0.334	ı	2008/02 -	2008/12 -
TON 599	11:59:31.80	+29:14:43.8	FSRQ	НРQ	0.729	BSL, PSC	2008/01 -	2008/12 -
ON 325	12:17:52.08	+30:07:00.6	BL Lac		0.13	BSL, PSC	2008/01 -	I
1ES 1218+304	12:21:21.94	+30:10:37.1	HBL		0.182	PSC	2008/01 -	ı
ON 231	12:21:31.7	+28:13:58.5	LBL		0.102	MSL, BSL, PSC	2008/11 -	ı
PG 1222+216	12:24:54.4	+21:22:47.0		LPQ	0.432	MSL, PSC	2009/04 -	I
3C 273	12:29:06.70	+02:03:08.6	FSRQ	LPQ	0.158	MSL, BSL, PSC	2008/02 -	ı
3C 279	12:56:11.17	-05:47:21.5	FSRQ	НРQ	0.538	MSL, BSL, PSC	2008/02 -	ı
PG 1424+240	14:27:00.39	+23:48:00.0	BL Lac		ı	BSL, PSC	2008/01 -	ı
PKS 1502+106	15:04:24.98	+10:29:39.2	FSRQ	НРQ	1.839	MSL, BSL, PSC	2009/04	I
PKS 1510-08	15:12:50.53	-09:05:59.8	FSRQ	НРQ	0.361	BSL, PSC	2008/02 -	2009/01 -
PG 1553+113	15:55:43.04	+11:11:24.4	BL Lac		0.36	BSL, PSC	2009/02 -	I
3C 336	16:24:39.09	+23:45:12.2	RLQ		0.93	1	2008/02 -	2009/02
4C 38.41	16:35:15.49	+38:08:04.5	FSRQ	LPQ	1.814	MSL, BSL, PSC	2009/02 -	I
3C 345	16:42:58.81	+39:48:37.0		НРQ	0.5928	BSL, PSC	2008/02 -	2009/02 -

表 4.2: ブレーザー観測リスト 続き

Name	RA	Dec	Class	Pol	red shift	Fermi	AKENO	OAO
(1)	(2)	(3)	(4)	(5)	(9)	(2)	(8)	(6)
Mrk 501	16:53:52.20	+39:45:36.6	HBL		0.034	MSL, BSL, PSC	2008/01 -	2009/02 -
IZW 187	17:28:18.60	+50:13:10.0	BL Lac		0.0554	PSC		
OT 081	17:51:32.82	+09:39:00.7	BL Lac	НРQ	0.322	BSL, PSC	2009/03 -	ı
3C 371	18:06:50.70	+69:49:28.1	BL Lac		0.051	PSC	2008/02 -	2009/03 -
3C 382	18:35:03.4	+32:41:47	BLRG		0.058	I	2009/02 -	I
1ES 1959+650	19:59:59.85	+65:08:54.7	HBL		0.047	MSL, BSL, PSC	2009/02 -	ı
BL Lac	22:02:43.30	+42:16:40.0	LBL		0.0686	MSL, BSL, PSC	2008/04 -	2008/09 -
CTA 102	22:32:36.41	+11:43:50.9		НРQ	1.037	BSL, PSC	2008/06 -	2008/10 -
3C 454.3	22:53:57.75	+16:08:53.6	FSRQ	ЮЧН	0.859	MSL, BSL, PSC	2007/11 -	2008/10 -
1ES 2344 + 514	23:47:04.84	+51:42:17.9	HBL		0.044	MSL, PSC	2008/05 -	ı

表 4.3: ブレーザー観測リスト 続き

第5章 Analysis

MITSuME 望遠鏡のデータは Fits という形式のファイルで保存されており、解析には IRAF というソフトウェアを使用した。この章では改良した解析処理の自動化と解析結果 の表示方法について説明する。なお、自動解析処理で今研究前に確立されている部分は案 西 卒業論文を引用した。

5.1 自動解析の流れ

自動解析は東工大側の PC (tensan) で行われる。以下に自動解析の流れとその処理を示す。

- 1. 前晩の観測された fits ファイルを全てデータベースから取得する
- 2. fits ヘッダーの OBJECT に入っている天体名ごとにフォルダを作成し、fits ファイ ルを分配する この際、ダークフレーム作成用の fits は DARK フォルダに移動する
- 3. DARK フォルダ内の fits ファイルからダークフレームを作成する
- 4. 各天体フォルダ内に作成されたダークフレームのシンボリックリンクをはる
- 5. 各天体フォルダ内で、解析に使用するフレームを選別する
- 6. 各天体フォルダ内で、解析に使用する fits、ダークフレームからセルフフラットフレーム (マスクなし)を作成する
- 7. 各天体フォルダ内で、バッドピクセルマスクフレームを作成する
- 8. 各天体フォルダ内で、解析に使用する fits、ダークフレーム、バッドピクセルマス クフレームからセルフフラットフレーム (マスクあり)を作成する
- 9. 各天体フォルダ内で、解析に使用する fits をリダクションし、重ね合わせる
- 10. 各天体フォルダ内で、重ね合わせた fits を測光する

- 11. 測光結果を各天体の等級ファイルに書込む
- 12. 解析結果用ページを作成する

5.2 依存ソフトウェア

観測データから光度曲線を作成するには、その間に行われる自動解析で使用しているソ フトウェアが実行可能な環境でなければならない。以下に、自動解析で使用されるソフト ウェアを列挙する。

案西 卒業論文では、Perl 言語で記述されたスクリプトを解析処理に使用していたが、 今研究では Python 言語で記述されたスクリプト内で Pyraf ライブラリを使用すること で IRAF の機能を利用している。

- Python 自動解析システムで使用しているスクリプト言語。実行環境はGNU/Linuxの 標準ソフトウェアとして提供されている。
- **IRAF(The Image Rduction and Analysis Facility** NOAO(the National Optical Astronomy Observatory) で開発されている天文解析用のソフトウェアパッケージ。光 赤外分野の標準的ソフトウェアで、FITS ファイルの解析に使用する。
- **Pyraf** IRAF の機能を Python 言語で記述されたスクリプトから使用するためのライブ ラリ。
- SExtractor TERAPIX が公開している画像から天体を検出するソフトウェア。観測した データから天体の等級を得るのに使用している。

atFunctions 天体の座標計算のためのライブラリ。

- WCSTOOLS FITS 形式の WCS 情報を操作するツール。プログラム集とライブラリ集 からなる
- USNO-B 1.0 U.S.Naval Observatory [8] で公開されている恒星情報カタログ。I バンド の相対測光に使用している。
- NOMAD United States Naval Observatory Flagstaff Station [9] で公開されている恒星 情報カタログ。g/とRバンドの相対測光に使用している。

gnuplot 2次元もしくは3次元のグラフを作成するためのコマンドラインアプリケーショ ンソフトウェアである。http://www.gnuplot.info で公開されているフリーウェアで ある。

5.3 **FITS**

FITS とは、天体のイメージデータ、天体スペクトルのデータなど天文分野で使われる 汎用のファイルフォーマットである。ASCII テキストで書かれたヘッダ部分とバイナリ データ部分からなっている。ヘッダ部分には、観測時刻、天球座標、露出時間などの観測 時の情報が保存され、バイナリデータ部分には2次元イメージが保存される。フレームの 選別では、ヘッダ部分に書かれた WCSMATCH と BG-LEVEL という値を利用している。 2次元イメージ部分には、天体を撮像した有効領域(1024 × 1024 pixels)と、オーバース キャン領域(50 × 1024 pixels)がある(図 5.1)。オーバースキャン領域は、CCD の電荷 を読み出した直後に、電荷の無いはずのところも電荷転送を行いつつ読み出した部分で ある。

図 5.1: 天体を撮像したデータ部分の有効領域と、オーバースキャン領域からなる。

5.4 自動解析スクリプト

IRAF はインタラクティブな(対話型の)ソフトウェアなので、観測者が解析する場合に は適しているが、特定の時間に自動で解析する手法には適していない。そこで MITSuME 望遠鏡の自動解析では IRAF のコマンドを Python で実行するための Pyraf というライ ブラリを使用して、自動解析を行うための Python スクリプトから IRAF の解析コマン ドを実行している。

この Python スクリプト(以降:自動解析スクリプト)では主に以下の処理を行う

- フレームの選別
- ダークフレームの作成
- スカイフラットフレームの作成
- リダクションおよび重ね合わせ
- 測光
- light curve の更新

5.5 フレームの選別

解析に使用するフレームを選別する処理では、Fits ヘッダーに書かれている観測時の 状況を表す各種パラメータの値を使用する。

以下に解析に使用する主なヘッダーデータについて説明する。

5.5.1 Fits ヘッダー

WCSMATCH

カタログから明るい天体を50個選択し、そのうち観測フレームの同じ座標に天体を検出 できた個数である。一般的に雲がかかると暗い天体が検出できなくなるので、WCSMATCH は小さくなる(下川辺修論)。

図 5.5.1 に WCSMATCH が 9 の場合のフレームと同じ天体で WCSMATCH が 38 の 場合のフレームを示す。WCSMATCH が少ないと明らかに写っている天体が少ないこと がわかる。

41

(a) WCSMATCH = 9

(b) WCSMATCH = 38

図 5.2: WCSMATCH による天体検出数の違い。(a) WCSMATCH が 9 の場合の 3C 454.3 のフレーム (R band)。(b) WCSMATCH が 38 の場合の 3C454.3 のフレーム (R band)。 WCSMATCH が少ないほうが明らかに検出できる天体数が少ないことがわかる。

BG-LEVEL

画像内の天体が無い部分の空の明るさ。一般的に雲がかかると夜光を反射するので、 BG-LEVELは大きくなる(下川辺修論)

図 5.3 に BG-LEVEL がそれぞれ 2096 と 5181 のときの QSOB 0917+449 を撮象した フレームを示す。この2つのフレームは連続して撮影されたものであり、BG-LEVEL が 高くなると明らかに検出できる天体数が減少していることがわかる。

FWHM-AVG

天体のピクセルカウントの fill width at half maximum である。画像内の検出可能な全ての天体の平均値である。focus が外れていると像が広がるため、FWHM-AVG は大きくなる。

5.5.2 フレーム選別の条件

観測中に雲がかかったフレームは解析の対象から外すことで、データの質を上げること ができる。解析フレームの選別は以下の条件から、1.2.の条件で自動選別したのち、3.4. 5.の条件に当てはまらないフレームだけ手動で除くようにした。

1. WCSMATCH が 20 以上

(a) BG-LEVEL = 2096

(b) BG-LEVEL = 5181

図 5.3: BG-LEVEL による天体検出数の違い。(a) BG-LEVEL が 2096 の QSOB 0917+449 のフレーム (R band)。(b) BG-LEVEL が 5181 の QSOB 0917+449 のフレーム (R band)。 2 つのフレームは連続して撮影されたものであり、BG-LEVEL が高くなると検出天体数 が減少していることがわかる。

2. FWHM-AVG の値が他のフレーム比較して突出していない

3. BG-LEVEL の変動がほぼ一定

4. Fits の天体画像を目視し、雲などが無い

5. 画像内の星が尾を引いていない

MITSuME 望遠鏡の観測では、ディザリングの1枚目で画像内の星が尾を引く減少がま れにおこる。天体が尾を引く分、星像がぼやけるので FWHM-AVG が上昇する場合がある (図 5.4 (a))。この場合は2.の条件に当てはまるため自動でのフレーム選別で除くことがで きる。しかし、天体として検出できないほど星が流れてしまっている場合は FWHM-AVG で除くことができない (図 5.4 (b))。この場合は目視で確認する必要がある。今研究で改 良した解析結果表示ページでは各フレームの画像が表示されるため、確認が容易になって いる (図 2.9)。

WCSMATCH が十分大きくても BG-LEVEL が変動する場合がある。この場合は WC-SMATCH だけでは不適切なフレームを排除できないため、BG-LEVEL の変動を目視し てどのフレームを除くか選別する必要がある。図 5.5 は WCSMATCH が 35 以上と十分 大きいが BG-LEVEL が変動している場合の WCSMATCH と BG-LEVEL の時間変動の グラフ (2009 年 11 月 04 日の 3C 454.3 の観測) である。

(a) FWHM-AVG = 5.9

(b) FWHM-AVG = 3.5

図 5.4: 星像が流れているフレームの FWHM-AVG の違い。(a) 星像が流れており、FWHM-AVG が 5.9 と他のフレームの分布 (3.2 ~ 3.8) よりも大きいため自動検出できる場合のフ レーム。(b) 星像が流れているにもかかわらず、FWHM-AVG が 3.5 であり、他のフレー ムの分布 (3.0 ~ 3.8) と同じため自動検出できず目視での確認が必要。

5.6 ダークフレームの作成

CCD には、シャッターを閉じた状態でも暗電流 (dark current) が流れている。この暗電 流によって発生する電荷がダークである。天体を観測したフレームにもこのダーク成分が 含まれているので、それを除かなければならない。そのために、ダーク成分のみのフレー ムを作成する必要がある。ダーク画像は日が沈んだ後と夜明け前にパトロール観測システ ムで自動的に撮像される。統計を上げるために、同じ露出時間のダーク画像を 10 枚程度 重ね合わせてダークフレームを作成する。

実際に行っている処理は以下の2つである。

1. バイアスを引いて、over scan 領域を切り取る

2. 重ね合わせ (combine:median, reject:sigclip, scale:none, zero:none)

5.7 フラットフレームの作成

CCD の1つ1つのピクセルは感度が一様ではないので、天体を観測したフレームの各 ピクセル値の感度ムラを補正しなければならない。そのための、ピクセルごとの感度ム ラ情報を持った画像がフラットフレームである。観測するときにディザリングしているた

(a) 3C 454.3 の BG-LEVEL の時間変動

図 5.5: 3C 454.3 の 2009 年 11 月 4 日の観測における WCSMATCH と BG-LEVEL の 時間変動。(a) WCSMATCH, (b) BG-LEVEL, WCSMATCH が 35 以上と十分大きいが BG-LEVEL が変動していることがわかる。

め、明るい天体の部分をマスクし、画像のx座標、y座標を揃えて重ね合わせ、中央値を とると、星の成分が取れてスカイバックグラウンド成分が残る。この残った成分を規格化 し、フラットフレームとしている。なぜなら、夜空からのスカイバックグラウンドが一様 だと仮定すると、このフラットフレームが持つムラは、ピクセルごとの感度ムラとみるこ とができるからである。このフラットフレームで天体を観測したフレームを割れば、感度 ムラを補正することができる。

図 5.6: ダークフレーム画像。白い方がカウント値が高い。シャッターを閉じて撮像して いても、カウント値が0になっていないのがわかる。

フラットフレームの作成で行う処理は以下の5つである。

- 1. バイアスを引いて、 over scan 領域を切り取る
- 2. **ダークを引く**
- 3. 重ね合わせる (combine:median, reject:sigclip, scale:mode)
- 4. ピクセルの平均値を求める
- 5. 平均値で割る

5.7.1 マスク有りフラットフレームの作成

バッドピクセルをまわりのピクセルの値で補正し、さらに明るい天体にマスクをして 平均値を求めることでマスク有りフラットフレームを作成する。行う処理は以下に10ス テップである。

- 1. バイアスを引いて、over scan 領域を切り取る
- 2. **ダークを引く**
- 3. マスク無しフラットフレームで割る

図 5.7: フラットフレーム画像。ピクセルごとのムラが出ているのがわかる。

- 4. バッドピクセルを補間する (fixpix())
- 5. 明るい天体のマスクを作成 (objmasks())
- 6. マスクをかける
- 7. 平均値を求める (maskstat())
- 8. 平均値で割る
- 9. ヘッダにマスク情報を書込む
- 10. 重ね合わせる (combine:median, scale:mode, reject:sigclip, masktype:!objmask)

5.8 バッドピクセルマスクフレームの作成

CCD には感度が他のピクセルよりも高すぎたり低すぎたりするピクセルがある。この ピクセルのことをバッドピクセルといい、このピクセルのカウント数は正しくない可能性 が高いため、まわりのピクセルから計算したカウント値に置き換える必要がある。そのた めに、このバッドピクセルのフレーム内の位置を表すバッドピクセルマスクフレームを作 成する必要がある。

MITSuME 望遠鏡では、ダークフレームで平均カウント値よりも 50 倍以上のカウント 値であるピクセルをバッドピクセルとしている。また、通常のフラットフレーム(マスク 無しフラットフレーム) でピクセルのカウント値が 0.3 より小さいピクセルもバッドピク セルとしている。

バッドピクセルマスクフレームの作成で行う処理は以下の5つである。

- 1. マスク無しフラットフレームを作成
- 2. ダークの平均値を求める
- 3. ダークの平均値の 50 倍を high threshold とする
- 4. フラットのピクセル値 0.3 を low threshold とする
- 5. それぞれの threshold を超えたピクセルの値を 1、それ以外を 0 とする

5.9 リダクションと重ね合わせ

リダクションとは撮像した生のデータから、ノイズなどを除いて、夜空からの成分の みのデータを作る処理である。生データの各ピクセルのカウント値には、バイアス成分 (BIAS)、ダーク成分 (DARK)、天体からの成分 (SIGNAL)、スカイバックグラウンド成 分 (SKY) が含まれている。つまり、以下のような式であらわすことができる。

 $COUNT = FLAT \cdot (SIGNAL + SKY) + DARK + BIAS$ (5.9.1)

ここで FLAT は各ピクセルのムラである。この中から SIGNAL を取り出すために以下の処理を行う。

- 1. バイアスを引いて、over scan 領域を切り取る
- 2. **ダークを引く**
- 3. フラットで割る
- 4. バッドピクセルを補完する
- 5. シフトして、座標を合わせる
- 6. 重ね合わせる (combine:median, reject:sigclip)

バイアスを引く

バイアスとは、CCD が読み出した電荷を AD 変換する際に付加されるゲタの部分である。この値を見積もるために、図 5.1 のオーバースキャン領域の平均値を使う。このバイ アスを引いた後のカウント値は以下のようになる。

$$COUNT = FLAT \cdot (SIGNAL + SKY) + DARK$$
(5.9.2)

ダークを引く

作成したダークフレームを引くことで、カウント値は以下のようになる。

$$COUNT = FLAT \cdot (SIGNAL + SKY) \tag{5.9.3}$$

フラットフレームで割る

各ピクセルのムラを補正するために、作成したフラットフレームで割るとカウント値は 以下のようになる。

$$COUNT = SIGNAL + SKY (5.9.4)$$

画像を重ね合わせる

欠陥ピクセルの値をまわりの値で補完し、複数枚の画像を赤道座標系で重ね合わせて1 枚の画像にする。この処理によりS/N比を上げる。n枚の画像を重ね合わせると、カウン ト値は以下のようになる。

$$COUNT = COUNT_{single} \cdot n \tag{5.9.5}$$

5.10 相対測光

相対測光とは、基準となる星(以後参照星と呼ぶ)の等級をカタログから取得し、その カタログ等級と測光した等級の差から、観測天体の等級を見積もる方法である。参照星及 びその等級は付録 B に示す。

母銀河の影響が jet 成分に対して無視できない天体は aperture photometry で測光し、 それ以外の天体は PSF photometry で測光した。ただし、IZW 187 は他の天体から作成す る PSF と radial profile が合わないため、aperture photometry で測光した。表 5.1 と表 5.2

Name	photometry	aperture radius	host galaxy estimation
		(arcsec)	
1ES 0033+595	aperture	5	0
GC 0109+224	PSF	$1.75 \times \text{fwhm}$	-
DA 055	PSF	$1.75 \times \text{fwhm}$	-
3C 66A	PSF	$1.75 \times \text{fwhm}$	-
AO 0235+16	PSF	$1.75 \times \text{fwhm}$	-
$1 ES \ 0647 + 250$	PSF	$1.75 \times \text{fwhm}$	-
S5 0716+71	PSF	$1.75 \times \text{fwhm}$	-
PKS 0735+17	PSF	$1.75 \times \text{fwhm}$	-
OI 287	PSF	$1.75 \times \text{fwhm}$	-
J 0805+614	PSF	$1.75 \times \text{fwhm}$	-
1 ES 0806 + 524	aperture	6	0
Q 0827+243 (OJ248)	PSF	$1.75 \times \text{fwhm}$	-
S5 0836+71	PSF	$1.75 \times \text{fwhm}$	-
OJ 287	PSF	$1.75 \times \text{fwhm}$	-
QSOB 0917+449	PSF	$1.75 \times \text{fwhm}$	-
1ES 1011+496	aperture	6	0
1ES 1028+511	PSF	$1.75 \times \text{fwhm}$	-
Mrk 421	aperture	10	0
Mrk 180	aperture	10	0
4C 49.22	PSF	$1.75 \times \text{fwhm}$	-
TON 599	PSF	$1.75 \times \text{fwhm}$	-
ON 325	aperture	10	0

表 5.1: 各天体の測光方法と母銀が補正の有無

に各天体で使用した測光方法と、母銀河の補正を行ったかどうかを示す。PSF photometry では、フレーム全体の星の FWHM の mode を fwhm として、その 1.75 倍を aperture radius としたときの aperture photometry の結果と比較して補正している。

Name	photometry	aperture radius	host galaxy estimation
		(arcsec)	
1ES 1218+304	aperture	6	0
ON 231	PSF	$1.5 \times \text{fwhm}$	-
PG 1222+216	PSF	$1.5 \times \text{fwhm}$	-
3C 273	PSF	$1.75 \times \text{fwhm}$	-
3C 279	PSF	$1.75 \times \text{fwhm}$	-
PG 1424+240	PSF	$1.75 \times \text{fwhm}$	-
PKS 1502+106	PSF	$1.75 \times \text{fwhm}$	-
PKS 1510-08	PSF	$1.75 \times \text{fwhm}$	-
PG 1553+113	PSF	$1.75 \times \text{fwhm}$	-
3C 336	PSF	$1.75 \times \text{fwhm}$	-
4C 38.41	PSF	$1.75 \times \text{fwhm}$	-
3C 345	PSF	$1.75 \times \text{fwhm}$	-
${\rm Mrk}~501$	aperture	10	0
IZW 187	aperture	10	-
OT 081	PSF	$1.75 \times \text{fwhm}$	-
3C 371	PSF	$1.75 \times \text{fwhm}$	-
3C 382	PSF	$1.75 \times \text{fwhm}$	-
$1 \text{ES} \ 1959{+}650$	PSF	$1.75 \times \text{fwhm}$	-
BL Lac	aperture	6	0
CTA 102	PSF	$1.75 \times \text{fwhm}$	-
3C 454.3	PSF	$1.75 \times \text{fwhm}$	-
$1 \text{ES} \ 2344 + 514$	aperture	10	0

表 5.2: 各天体の測光方法と母銀が補正の有無

5.10.1 Aperture photometry

観測データから測光し天体の等級を得るためには、スカイバックグラウンドを引いて、 天体からのシグナルのみを取り出さなければならない。そのための方法として aperture photmetory がある。aperture photmetory とは、天体部分のスカイバックグラウンドをそ の周りの星がない領域から見積もる方法である。図 5.8 は aperture photmetry の概念図で ある。

図 5.8: aperture photmetry の概念図。

天体の周りの星がない領域 (Annulus) のカウント値を、天体のある領域 (Aperture) の 大きさで規格化し、Aperture 領域のカウント値から引くことで、スカイバックグラウン ド成分を除くことができる。

つまり、Aperture 領域の総カウント数を *SUM* [counts]、面積を *AREA* [pixel]、Annulus 領域の単位ピクセルあたりのカウント数を *MSKY* [counts/pixel] とすると、シグナル (*SIGNAL*) は以下の式で求められる。

$$SIGNAL = SUM - AREA \cdot MSKY[counts]$$

$$(5.10.1)$$

SIGNALの計算の不確定性は、カウント値の統計的なゆらぎと、バックグラウンドの 統計的なゆらぎが寄与する。そのため、SIGNALの不確定性である NOISE は、以下の 式で求められる。

$$NOISE = \sqrt{\frac{SIGNAL}{GAIN} + AREA \cdot STDEV^2 + \frac{AREA^2 \cdot STDEV^2}{NSKY}}$$
(5.10.2)

ここで、*GAIN* [electrons/ADU] は CCD のゲイン、*NSKY* [pixel] は Annulus 領域の 面積、*STDEV* [counts] は Annulus 領域で求められたバックグラウンドのゆらぎである。

上記の *SIGNAL* と *NOISE* から、機械等級 *MAG*_{inst} とそのエラー *MERR*_{inst} を以下 の式で求められる。機械等級とは CCD のカウント値を基準とした等級で、CCD によって 異なる。

 $MAG_{inst} = -2.5 \log_{10}(SIGNAL) + 2.5 \log_{10}(EXPTIME)$ (5.10.3)

$$MERR_{inst} = 1.0857 \cdot \frac{NOISE}{SIGNAL} \tag{5.10.4}$$

EXPTIME は画像の露出時間である。

実際の等級を求めるためには、機械等級での0等級が、実際の等級の何等級になるのか を求めなければならない。それがゼロ点である。パトロール観測システムでは、あらかじ め $3\sim6$ 個の参照星を決めておき、それぞれの参照星から得たゼロ点の加重平均を取って いる。各参照星のカタログ等級 $MAG_{catalog}$ とエラー $MERR_{catalog}$ 、機械等級 MAG_{ref} と エラー $MERR_{ref}$ から、ゼロ点 ZMAG とエラー ZERR は以下の式で得られる。

$$ZMAG_i = MAG_{catalogi} - MAG_{refi}$$
(5.10.5)

$$ZERR_i^2 = MERR_{catalogi}^2 + MERR_{refi}^2$$
(5.10.6)

各ゼロ点から等級 MAG および等級エラー MERR は以下の式で得られる.

$$MAG = MAG_{inst} + \frac{\sum_{i=1}^{n} ZMAG_{i}/ZERR_{i}^{2}}{\sum_{i=1}^{n} 1/ZERR_{i}^{2}}$$
(5.10.7)

$$MERR^{2} = \sqrt{MERR_{inst}^{2} + \frac{1}{\sum_{i=1}^{n} 1/ZERR_{i}^{2}}}$$
(5.10.8)

得られた天体の等級データおよび等級エラーを、日付、MJD、FITS ファイル名と共に、 各天体の等級データファイルに書き込む。

5.10.2 PSF Photometry

PSF photometry は ターゲット天体以外の複数の天体から PSF を作成し、その PSF を 用いてターゲットを fitting し、機械等級を求める方法である。同一のフレーム内であれ ば、観測状況が同じであるため天体の PSF が同じ形になると考えられる。また、aperture photometry とのシステマティックな違いを補正するために、 PSF を作成した複数の天体 について、 PSF photometry と aperture photometry の差を求め、その平均値をターゲッ ト天体についても補正する。

PSF phtometry には

http://www.ioa.s.u-tokyo.ac.jp/nmatsuna/Japanese/software/autodao.html

で提供されている audodao (daophot 自動測光パッケージ)を使用した。

このパッケージを使用する前に、SEXtractor を使用して天体を検出し、カウント値が 55000 より小さく、SEXtractor が求めた FWHM が 10 より小さい天体だけから PSF を 作成するようにした。また、aperture photometry での測光値を利用して補正するために 必要な aperture 半径には、SEXtractor で求めた FWHM の mode を計算し、その値の 1.75 倍を使用した。この設定値は谷津 修士論文の方法に従ったものである。

5.11 Galactic Extinction

銀河系外の天体からの光は、われわれの天の川銀河を通過する際にダストによる吸収を 受ける。そのため、観測された天体の明るさはその分だけ暗くなっている。この量を補正 するために、Schlegel et al. 1998 の Appendix C の TABLE 6 の値と NED¹ で報告され ている値を用いて吸収量を見積もった。図 5.9 に NED で 3C 66A のデータを検索した場 合に表示される Galactic Extinction の値を示す。この結果から 3C 66A では E(B - V) = 0.084 mag という値が得られる。

 g', R_C, I_C band の A/E(B-V) として Schlegel et al. 1998 の TABLE 6 から $A_{g'}/E(B-V) = 3.793$ (Sloan g'), $A_{R_C}/E(B-V) = 2.634$ (CTIO R), $A_{I_C}/E(B-V) = 1.962$ (CTIO I) を使用した (5.11)。

上記の値と NED で報告されている各天体の E(B-V) から、以下の式で吸収量 A を 見積もった。

$$A_{\lambda}[mag] = E(B-V) \times A_{\lambda}/E(B-V)$$
(5.11.1)

¹http://nedwww.ipac.caltech.edu/)

図 5.9: NED で表示される 3C 66A の galactic extinction の情報。ここで報告されている E(B - V) の値 を使用して吸収量を計算した。

x = 0.5. y = 10	$C, IC \subset \mathbb{K}^r$		aurve Extinctio
Filter	$\lambda_{\rm eff}(\mu m)$	A/A(V)	A/E(B - V)
Sloan g'	0.4925	1.161	3.793
CTIO R	0.6602	0.807	2.634
CTIO I	0.8046	0.601	1.962

表 5.3: q', R_C, I_C で使用した Relative Extinction

5.12 等級から flux への変換

観測した等級から flux への変換には、天の川銀河の補正をした後、Fukugita et al. 1996の式 (1)を使用した。

$$F_{\lambda} \left[\text{ergs}^{-1} \text{cm}^{-2} \text{Hz}^{-1} \right] = 10^{-0.4(MAG_{obs} - A_{\lambda} + AB_{\lambda} + 48.6)}$$
(5.12.1)

ここで、 A_{λ} は galactic extinction の見積り量であり、 AB_{λ} は AB 等級での α Lyr で ある (表 5.12, Fukugita et al. 1996 TABLE 8)。

5.13 Estimation of Host Galaxy

HBL には jet 成分と同等程度の明るさの Host Galaxy を持つものがある。その場合、 jet 成分の変動を調べるためには Host Galaxy の明るさを引いて jet 成分のみの明るさを

表 5.4: AB 等級での α Lyr (Fukugita et al. 1996 TABLE 8 より抜粋)

	g'	R_C	I_C
AB	-0.093	0.212	0.453

Name	photometry	aperture radius	host galaxy estimation
		(arcsec)	
1ES0033+595	aperture	5	Table B.2.
1ES0806 + 524	aperture	6	Table B.5.
1ES1011+496	aperture	6	Table B.6.
Mrk421	aperture	10	Table B.8.
Mrk180	aperture	10	Table B.10.
ON325	aperture	10	Table B.12.
1ES1218+304	aperture	6	Table B.13.
Mrk501	aperture	10	Table B.17.
BLLAC	aperture	6	Table B.20.
1ES2344 + 514	aperture	10	Table B.21.

表 5.5: 母銀河の補正を行った天体と対応する Nilsson et al. 2009 の表

表 5.6: 各 bandpass での楕円銀河の色 (Fukugita et al. 1995 より抜粋)

type	$R_C - I_C$	g' - r'	$r' - R_C$
Е	0.70	0.77	0.25

求める必要がある。

いくつかの有名な HBL の Host Galaxy はこれまでに調べられている。ここでは、Nilsson et al. 2009 のデータを参照して、観測データに含まれる Host Galaxy の明るさを見積もっ た。表 5.13 に母銀河を見積もった各天体と、使用した Nilsson et al. 2009 の表番号を示 す。1ES 1028+511 および 1ES 1959+650 は Nilsson et al. 2009 で母銀河の flux が報告 されているが、jet 成分に対して母銀河の成分が MITSuME 望遠鏡での観測結果に影響す るほど明るくないため、PSF photometry を行い母銀河の補正は行っていない。

Nilsson et al. 2009 で報告されている母銀河の flux は R_C band で得られたものであ るため、母銀河の color index を仮定した上で我々が観測している g', I_C band での flux を求める必要がある。BL Lac 型ブレーザーは中心に楕円銀河があると思われており (e.g. Stickel et al 1993) ここでは、母銀河として楕円銀河を仮定し、その color index として Fukugita et al. 1995 の Table 3 (a) および (m) の値を使用して計算した。

Nilsson et al. 2009 で報告されている flux は天の川銀河の補正が行われていない。そ

の補正を含めて以下の式で g', R_C, I_C band での母銀河の flux を見積もった。

$$F_{g'}[\text{erg/cm}^2/\text{s}] = F_{\text{nilsson}} \cdot 10^{-26} \cdot 10^{-0.4(1.02 - A_{\lambda})} * \frac{3930.0}{3080.0}$$
(5.13.1)

$$F_{R_C}[\text{erg/cm}^2/\text{s}] = F_{\text{nilsson}} \cdot 10^{-26} \cdot 10^{0.4 \cdot A_{\lambda}}$$
(5.13.2)

$$F_{I_C}[\text{efg/cm}^2/\text{s}] = F_{\text{nilsson}} \cdot 10^{-26} \cdot 10^{-0.4(-0.70 - A_\lambda)} * \frac{2380.0}{3080.0}$$
(5.13.3)

第6章 Result

MITSuME 望遠鏡による可視光の観測結果と、Fermi 衛星による 公開ガンマ線観測デー タよる light curve を以下に示す。light curve 作成に利用したガンマ線データは 1 GeV ~ 300 GeV である。

6.1 可視光 light curve

6.1.1 DA 055

図 6.1: DA 055 の可視光 light curve および color index の時間変化。上から g', R_C, I_C band の flux (単位は $[10^{-12} \text{erg/cm}^2/\text{s}]$) の light curve であり、最下グラフが $g' - I_C$ の color index の時間変化である。

図 6.2: DA 055 の Spectral Energy Distribution (SED)。赤丸は NED で報告されている観 測点であり、黒丸は MITSuME 望遠鏡による g', R_C, I_C の観測点 (MJD = 54812, 55209) である。

図 6.1 は 2008 年 10 月から 2010 年 1 月までの DA 055 の可視光 (g', R_C, I_C) の light curve および color index $(g' - I_C)$ である。図より、MJD = 54810 に大規模なフレアを起こし ていることがわかる。このときの flux は 3.32×10^{-11} [erg/cm²/s] であり、最も暗いと き $(2.62 \times 10^{-12} [erg/cm^2/s])$ に比べ約 10 倍明るくなっている。全体として明るさと color index に相関は無いが、flare を起こしている MJD = 54800 から MJD = 54820 までの約 20 日では color index が約 0.1 小さくなっていることがわかる。このことは、flare 時に可 視光域が synchrotron 放射のピーク波長帯を横切った、もしくはスペクトルの形が変わっ た可能性を示している。MJD = 55100 以降は low state が続いており、常に高い変動状 態にあるわけではなく、大規模な flare が単発的にランダムに発生する傾向がある。

図 6.2 に DA 055 の Spectral Energy Distribution (SED) を示す。赤丸はこれまでに観 測された観測値であり、NED を参照した。黒丸は MITSuME 望遠鏡で得られた flux で ある (MJD = 54812, 55209)。図より可視光域は synchrotron 放射のピーク周波数付近か それよりも高エネルギー側にある可能性が高い。しかし、DA 055 の参照星の等級として GSC2.3 を参照したので、より正確な spectral index を取得するためには、DA 055 の領 域の field photometry が必要である.

図 6.3: 1ES 0647+250 の可視光 light curve および color index の時間変化。上から g', R_C, I_C band の flux (単位は $[10^{-13} \text{erg/cm}^2/\text{s}]$)の light curve であり、最下グラフが $g' - I_C$ の color index の時間変化である。

MITSuME 望遠鏡による可視光 (g', R_C, I_C) の light curve および color index $(g' - I_C)$ を図 6.3 に示す。観測期間は 2008 年 8 月から 11 月までの 3ヶ月間であり、この期間中 flux に大きな変動は見られず、flare や out burst は起こっていない。また、color index にも 際立った変動は見られない.

図 6.4: 1ES 0647+250 の Spectral Energy Distribution (SED)。赤丸は NED で報告され ている観測点であり、黒丸は MITSuME 望遠鏡による g', R_C, I_C の観測点 (MJD = 54801) である。

図 6.4 に 1ES 0647+250 の Spectral Energy Distribution (SED) を示す。赤丸はこれま でに観測された観測値であり、NEDを参照した。黒丸は MITSuME 望遠鏡で得られた flux である (MJD = 54801)。図より、これまでにあまり観測されていないことがわかる。特 に X 線からガンマ線の観測点は NED では報告されていない。可視光の spectral index か ら synchrotron 放射のピーク位置は可視光域よりも高エネルギー側にあることがわかる。

図 6.5: PKS 0735+17 の可視光 light curve および color index の時間変化。上から g', R_C, I_C band の flux (単位は $[10^{-13} \text{erg/cm}^2/\text{s}]$) の light curve であり、最下グラフが $g' - I_C$ の color index の時間変化である。

図 6.5 に PKS 0735+17 の可視光 (g', R_C, I_C) light curve および color index $(g' - I_C)$ を示す。明野 MITSuME 望遠鏡の観測は 2008 年 2 月から行われており、岡山 MITSuME 望遠鏡でも 2008 年 12 月から 2009 年 3 月に集中的に観測が行われている。MJD = 54830 付近に flux のピークがあり、この flare ではピークに達するまでの timescale に対して、 flare 前と同じ flux level まで戻るのにかかる timescale の方が長いことがわかる。また、 明るさの変動に対して color index に明らかな変化はなく一定のままである。

図 6.6: PKS 0735+17 の Spectral Energy Distribution (SED)。赤丸は NED で報告され ている観測点であり、黒丸は MITSuME 望遠鏡による g', R_C, I_C の観測点 (MJD = 54497, 54803) である。

図 6.6 に PKS 0735+17 の Spectral Energy Distribution (SED) を示す。赤丸はこれ までに観測された観測値であり、NED を参照した。黒丸は MITSuME 望遠鏡で得られた flux である (MJD = 54497, 54803)。図より、これまでに多くの衛星・望遠鏡で観測され ていることがわかる。また、今研究で観測した期間の flux は比較的 low state に位置し ていいることがわかる。可視光域は synchrotron 放射のピーク周波数よりも高エネルギー 側に位置している。PKS 0735+17 は EGRET によって検出されており、Fermi 衛星でも 検出され Bright Source List で報告されている。

6.1.4 Q 0827+243

図 6.7: Q 0827+243 の可視光 light curve および color index の時間変化。上から g', R_C, I_C band の flux (単位は $[10^{-13} \text{erg/cm}^2/\text{s}]$) の light curve であり、最下グラフが $g' - I_C$ の color index の時間変化である。

2008 年 10 月からの Q 0827+243 の可視光 (g', R_C, I_C) light curve および color index ($g' - I_C$) を図 6.7 に示す。MJD = 54750 から MJD = 55140 の観測では、可視光 flux は low state のまま変動がなかったが、MJD ~ 55170 で flare が起こり、 flux が約 1.5 倍明 るくなっている。MJD = 55178 には R_C band で 4.0×10^{-12} [erg/cm²/s] まで明るくなっ ており、low state の 約 2.5 倍に達している。また、flare によって flux が明るくなると、 color index も大きくなっていることがわかる。つまり、redder-when-brigher の傾向があ る。これは、low state 状態では、synchrotron 放射と disk などからの熱的放射が同程度 になっている可能性を示していると考える。

図 6.8: Q 0827+243 の Spectral Energy Distribution (SED)。赤丸は NED で報告されて いる観測点であり、黒丸は MITSuME 望遠鏡による g', R_C, I_C の観測点 (MJD = 55220, 54800) である。

図 6.8 に Q 0827+243 の Spectral Energy Distribution (SED) を示す。赤丸はこれまで に観測された観測値であり、NED を参照した。黒丸は MITSuME 望遠鏡で得られた flare 時と low state 時の flux である (MJD = 55220, 54800)。図からわかるように、電波およ び X 線の flux から可視光域は synchrotron 放射のピーク、もしくはピークよりも高エネ ルギー側に位置すると予測されるが、low state 状態での可視光域の spectral index は右 上がりである。このことから、可視光から紫外線域にかけて disk などからの熱的放射に よる blue bump がある可能性が考えられる。さらに、flare 時には spectral index が low state 状態のときよりも flat になっており、熱的成分に対して jet 成分の割合が増えて来 たため spectral index が変わったと解釈でき、blue bump の説明とも一致する。

また、Q 0827+243 は EGRET で検出されており、Fermi 衛星の観測では Bright Source List には載っていないが、 Point Source Catalog では flux が報告されている。

図 6.9: QSOB 0917+449 の可視光 light curve および color index の時間変化。上から g', R_C, I_C band の flux (単位は $[10^{-13} \text{erg/cm}^2/\text{s}]$) の light curve であり、最下グラフが $g' - I_C$ の color index の時間変化である。

図 6.9 は QSOB 0917+449 の可視光 (g', R_C, I_C) light curve および color index $(g' - I_C)$ である。観測は 2009 年 1 月から開始されている。明るさの変動が大きく、最も明るいと きと暗いときで flux が約 3 倍異なる。明るさと color index の間には関係性が見られ、特 に MJD = 55110 以降は color index の変動が顕著になっている。

図 6.10: QSOB 0917+449 の Spectral Energy Distribution (SED)。赤丸は NED で報告 されている観測点であり、黒丸は MITSuME 望遠鏡による g', R_C, I_C の観測点 (MJD = 54848, 55218) である。

図 6.10 に QSOB 0917+449 の Spectral Energy Distribution (SED) を示す。赤丸はこ れまでに観測された観測値であり、NED を参照した。黒丸は MITSuME 望遠鏡で得ら れた flare 時と low state 時の flux である (MJD = 54848, 55218)。図より、可視光域は syncrotron 放射のピーク周波数よりも高エネルギー側であることがわかる。

図 6.11: 4C 49.22 の可視光 light curve および color index の時間変化。上から g', R_C, I_C band の flux (単位は $[10^{-13} \text{erg/cm}^2/\text{s}]$) の light curve であり、最下グラフが $g' - I_C$ の color index の時間変化である。

図 6.11 に 4C 49.22 の可視光 (g', R_C, I_C) light curve および color index $(g' - I_C)$ を示す。 観測は 2008 年 2 月から開始されている。MJD = 54500 から MJD = 54570 までは 変動が 小さく R_C band で約 2.7×10^{-12} [erg/cm²/s] で安定しているが、MJD = 54580 から徐々 に暗くなり、MJD = 54770 から MJD = 54920 までの観測では 約 1.9×10^{-12} [erg/cm²/s] で一定している。その後、MJD = 55200 からの観測では flux レベルは再び 約 2.8×10^{-12} [erg/cm²/s] に戻っている。ここでは、MJD = 55213 に 4.1×10^{-12} [erg/cm²/s] まで 明るくなっているが、2 日前 (MJD = 55211 では 2.8×10^{-12} [erg/cm²/s]) と翌日 (MJD = 55213 では 3.2×10^{-12} [erg/cm²/s]) は安定時の flux と同レベルであり、この flare の timescale は観測系で約 1 日から 2 日ということがわかる。

図 6.12 に 4C 49.22 の Spectral Energy Distribution (SED) を示す。赤丸はこれまでに 観測された観測値であり、NED を参照した。黒丸は MITSuME 望遠鏡で得られた MJD = 54578 のときの flux と MJD = 54801 のときの flux である。図より、可視光域は

図 6.12: 4C 49.22 の Spectral Energy Distribution (SED)。赤丸は NED で報告されて いる観測点であり、黒丸は MITSuME 望遠鏡による g', R_C, I_C の観測点 (MJD = 54578, 54801) である。

synchrotron 放射のピーク周波数よりも高エネルギー側に位置すると予測される。もし jet 成分が disk などからの放射成分よりも卓越している場合は可視光域の spectral index は 右下がりになると考えられる。しかし、MITSuME 望遠鏡による観測結果から得られた spectral index は右上がりになっている。また、NED で報告されている過去の可視光の 観測でも spectral index は右上がりになっていることがわかる。このことから、紫外線域 に jet 成分と同等もしくは jet 成分よりも大きい熱的成分による bump があることを提案 する。

Q 0827+243 では、熱的成分が優位な間は明るさが一定であるが、flare によって jet 成 分が優位になると明るさの変動が大きくなり、 color index も変化していると考えた。し かし、この天体では MJD = 54780 から MJD = 54920 の low state が熱的成分が優位な 状態で、 MJD = 54490 から MJD = 54560 までの high state を flare 状態と考えると、 flare 状態にしては明るさの変動が小さいということと、この flux level の方がスペクトル の傾きが大きいことから、この仮定は合わない。よって、flare によって jet 成分が増え たという可能性よりも、熱的成分が優位な状態のままで、熱的成分が増加したと考えるほ うが可能性が高い。

6.1.7 TON 599

図 6.13: TON 599 の可視光 light curve および color index の時間変化。上から g', R_C, I_C band の flux (単位は $[10^{-13} \text{erg/cm}^2/\text{s}]$)の light curve であり、最下グラフが $g' - I_C$ の color index の時間変化である。

図 6.13 は TON 599 の 2008 年 1 月からの可視光 (g', R_C, I_C) light curve および color index $(g' - I_C)$ である。この天体はパロール観測が開始された当初から観測対象としてい た天体である。light curve からわかるように、明るさの変動が非常に大きく、 R_C band の flux で、MJD = 54612 に 1.6×10^{-11} [erg/cm²/s] $(R_{mag} \sim 14.86)$ に達する巨大 flare が起っ ており、さらにその7ヶ月後の MJD = 55169 に再び 1.5×10^{-11} [erg/cm²/s] $(R_{mag} \sim 14.91)$ まで明るくなっている。MJD = 54830 から MJD = 54970 までの約5ヶ月間は変動が小 さく約16 等から17 等と暗く、最も暗いときでは flux が 8.6×10^{-13} [erg/cm²/s] であり、 明るさの変動は20 倍にもなっている。

 $MJD = 54610 \ \& MJD = 54550 \ on flare の立ち上がりの形は似ており、特に flux が <math>4.0 \times 10^{-12} [erg/cm^2/s]$ から 3 倍にまで明るくなるのにかかる時間はどちらも約 30 日であ り、この timescale が TON 599 の特徴的な timescale である可能性がある。

図 6.14: TON 599 の Spectral Energy Distribution (SED)。赤丸は NED で報告されて いる観測点であり、黒丸は MITSuME 望遠鏡による g', R_C, I_C の観測点 (MJD = 54612, 54970) である。

図 6.14 に TON 599 の Spectral Energy Distribution (SED) を示す。赤丸はこれまでに 観測された観測値であり、NED を参照した。黒丸は MITSuME 望遠鏡で得られた MJD = 54612 のときの flux と MJD = 54970 のときの flux である。図より、可視光域は synchrotron 放射のピーク周波数よりも高エネルギー側に位置することがわかる。また、 MJD = 54612 のときの spectral index は右下がりなのに対して、 MJD = 54970 のとき の spectral index は右上がりになっている。また、MJD = 54970 と同程度の flux level で ある NED での報告値の spectral index も右上がりになっている。これは、spectral index が右下がりになっている MJD = 54970 では jet 成分が卓越していることを示しており、 暗くなると disk などからの熱的放射による成分が jet 成分よりも優位になるため、紫外 線側の方が明るくなり spectral index が変わると解釈できる。

図 6.15: 1ES 1218+304 の可視光 light curve および color index の時間変化。上から g', R_C, I_C band の flux (単位は $[10^{-13} \text{erg/cm}^2/\text{s}]$)の light curve であり、最下グラフが $g' - I_C$ の color index の時間変化である。

図 6.15 に 1ES 1218+304 の可視光 (g', R_C, I_C) light curve および color index $(g' - I_C)$ を示す。観測開始は 2008 年 2 月である。数ヶ月の長い timescale の変動があり、その変動 の明るさの変化は比較的小さい。例えば、MJD = 54880 から MJD = 54920 までの変 動では、ピークに達した MJD = 54907 での flux は 6.23×10^{-12} [erg/cm²/s] であるのに 対し、減光が終わった MJD = 54939 での flux は 4.63×10^{-12} [erg/cm²/s] とその変動は 約 1.5 倍でしかない。color index はばらつきが大きく、color index の変動と明るさの変 動には明らかな相関は見られない。

図 6.16: 1ES 1218+304 の Spectral Energy Distribution (SED)。赤丸は NED で報告され ている観測点であり、黒丸は MITSuME 望遠鏡による g', R_C, I_C の観測点 (MJD = 54502, 54784) である。

図 6.16 に 1ES 1218+304 の Spectral Energy Distribution (SED) を示す。赤丸はこれ までに観測された観測値であり、NED を参照した。黒丸は MITSuME 望遠鏡で得られ た MJD = 54502 のときの flux と MJD = 54784 のときの flux である。図より、可視 光域は synchrotron 放射のピーク周波数付近に位置するのがわかる。ピーク周波数の位 置や flux は jet の物理的パラメータの変化によって大きく影響を受けるため変動しやす い。そのため、MITSuME 望遠鏡で観測した color index の変動が大きいのは、可視光域 が synchrotron 放射のピーク付近にあたるため、物理パラメータの変化でピーク位置が可 視光域を横切った結果と考えることができる。

6.1.9 PKS 1510-08

図 6.17: PKS 1510-08 の可視光 light curve および color index の時間変化。上から g', R_C, I_C band の flux (単位は $[10^{-13} \text{erg/cm}^2/\text{s}]$) の light curve であり、最下グラフが $g' - I_C$ の color index の時間変化である。

図 6.17 は PKS 1510-08 の可視光 (g', R_C, I_C) の light curve および color index $(g' - I_C)$ である。MJD = 54910 から MJD = 54940 まで激しい flare が起っており、それに合わ せて color index も大きくなっている。MJD = 54870 から MJD = 54890 までは flux が ほぼ一定であり、安定的な low state の可能性がある。明るさと color index の redderwhen-brighter の特徴は 3C 454.3 と同様の特徴がある。特に color index がある値まで大 きくなると flux がさらに明るくなっても color index が変化しなくなるという傾向は 3C 454.3 と同じであり、このことから PKS 1510-08 の low state 状態では synchrotron 放射 と disk などからの熱的放射が同程度寄与している可能性がある。

図 6.18: PKS 1510-08 の Spectral Energy Distribution (SED)。赤丸は NED で報告され ている観測点であり、黒丸は MITSuME 望遠鏡による g', R_C, I_C の観測点 (MJD = 54932, 54871) である。

図 6.18 に PKS 1510-08 の Spectral Energy Distribution (SED) を示す。赤丸はこれ までに観測された観測値であり、NED を参照した。黒丸は MITSuME 望遠鏡で得られた flux である (MJD = 54932, 54871)。図より、可視光域は synchrotron 放射のピーク周波 数よりも高エネルギー側に位置していることがわかる。さらに、NED で報告されている 過去の可視光の観測から、可視光域の spectral index が右上がりであることがわかる。こ れは紫外線領域に disk などからの熱的放射による bump があることを示している。つま り、MJD = 54870 から MJD = 54890 までの low state 状態ではこの熱的放射成分が優 勢であったと考えることができ、color index の傾向とも一致する。また、 MJD = 54932 では spectral index が 右下がりになっていることから、この flux level では jet 成分が 熱的成分よりも卓越していると考えることができる。つまり、この観測時では熱的成分の flux は R_C band で 2.52×10^{-11} [erg/cm²/s] より小さいと言える。

6.1.10 3C 345

図 6.19: 3C 345 の可視光 light curve および color index の時間変化。上から g', R_C, I_C band の flux (単位は $[10^{-13} \text{erg/cm}^2/\text{s}]$)の light curve であり、最下グラフが $g' - I_C$ の color index の時間変化である。

図 6.19 に 3C 345 の可視光 (g', R_C , I_C) light curve および color index ($g' - I_C$)。を示す。 この天体は岡山 MITSuME 望遠鏡でも観測している。MJD = 54500 から MJD = 54650 までの 5ヶ月間は flux が小さく変動していない。このことから low state 状態だと考えら れる。一方、MJD = 54870 から MJD = 55010 までの観測では flare が起こっているの がわかる。最も明るくなったのは MJD = 54978 で flux は 5.18 × 10⁻¹²[erg/cm²/s] に達 している。low state 状態の flux は約 1.8×10^{-12} [erg/cm²/s] であるので、約 3 倍に明る くなっている。

low state 状態での color index は約 1.1 であるが、フレアが起こっている期間では 約 1.3 に増えている。しかし、flux が 約 $3.0 \times 10^{-12} [erg/cm^2/s]$ より大きくなっても color index はそれに比例した増加を示していない。つまり、可視光の flux がある閾値を越える と、color index が変わらなくなるという 3C 454.3 や PKS 1510-08 と同様の傾向が見ら れる。

図 6.20: 3C 345 の Spectral Energy Distribution (SED)。赤丸は NED で報告されている 観測点であり、黒丸は MITSuME 望遠鏡による g', R_C, I_C の観測点 (MJD = 54978, 54594) である。

図 6.20 に 3C 345 の Spectral Energy Distribution (SED) を示す。赤丸はこれまでに 観測された観測値であり、NED を参照した。黒丸は MITSuME 望遠鏡で得られた flux で ある (MJD = 54978, 54594)。図より、MJD = 54978 の flux level は NED で報告され ている過去の観測と同程度であることがわかる。また、可視光域は synchrotron 放射の ピーク周波数よりも高エネルギー側にあることがわかる。MITSuME 望遠鏡で観測した g', R_C, I_C の spectral index では R_C band に折れ曲がりがあり、NED で報告されている データも可視光域に折れ曲がりがある。このことから、disk などからの熱的放射成分が jet 成分と同程度であり、可視光域が synchrotron bump と 熱的成分による blue bump に 谷間にある可能性を示している。

6.2 可視光とガンマ線 light curve の相関関係

6.2.1 3C 66A

図 6.21: 3C 66A のガンマ線と可視光の light curve および color index の時間変化。上から 1 ~ 300 GeV の flux (単位は $[10^{-8}$ photon/cm²/s])の light curve, g', R_C, I_C band の flux (単位は $[10^{-12}$ erg/cm²/s])の light curve であり、最下グラフが $g' - I_C$ の color index の時間変化である。

2008年1月から観測が開始された 3C 66A の観測結果を図 6.21 に示す。上から、Fermi 衛星による gamma-ray の light curve, MITSuME 望遠鏡による g', R_C , I_C band の light curve、可視光での color index ($g' - I_C$) である。岡山 MITSuME でも観測しており、観 測期間 500 日中優位な flux を求められた観測日数は 180 日を超え、密なサンプリングで データをとることに成功している。特に、複数の band を合わせて長期間をカバーした light curve を得る場合と異なり、g', R_C , I_C それぞれで同一期間・長期の light curve を得 られている。 flux は激しく変動しているが、color index には明らかな変動は見られない。つまり可視 光の明るさと spectral index の間に相関がないと言える。この結果は Takalo et al 1996 と 一致する。これは、可視光の全放射は同じ起源、jet 内で移動する同じ relativistic electrons を持つことを意味している。(Begelman et al 1984; Brown et al 1989, Takalo et al 1996) ま た、この変動は jet 内の shock による電子密度の増加 (enhanced electron number density) によって起こる可能性がある。これらの shock は jet 内での (clumpy) accretion の増加や magnetic instabilities によって生成されうる。(e.g. Wiita et al 1992)

可視光の light curve では、timescale が短く振幅が小さい変動が定常的にあり、その上で、timescale の大きい変動もあることがわかる。特に MJD = 55050 から MJD = 55200 にかけて徐々に flux が大きくなっており、約半年かけて2倍の明るさに達している。

図 6.22: 3C 66A のガンマ線と可視光の flux

の相関図。青点は Fermi 衛星で 1day 積分の 図 6.23: 3C 66A の Discrete Correlation flux、赤点は Fermi 衛星で 1 week 積分 flux Function。明らかなピークが見られないこと それぞれとの可視光の対応を表している。可 から、ガンマ線と可視光の間に相関がないこ 視光は対応する期間内の flux の平均をとって とがわかる。 いる。

図 6.22 はガンマ線と可視光の flux の相関図である。青点は Fermi 衛星で 1day 積分の flux、赤点は Fermi 衛星で 1 week 積分 の flux であり、可視光は対応する期間内の flux の平均をとっている。この図から、ガンマ線と可視光には相関がないことがわかる

図 6.23 はガンマ線と可視光の Discrete Correlation Function (DCF) である。この図か

図 6.24: 3C 66A の Spectral Energy Distribution (SED)。赤丸は NED で報告されている観測点であり、黒丸は MITSuME 望遠鏡による g', R_C, I_C の観測点 (MJD = 091223, 081026) である。

らも DCF の amplitude が 0.2 未満と小さく、明らかなピークがないことから、ガンマ線 と可視光に相関がないことがわかる。

BL Lac object 3C 66A (PKS 0219+428) は長年可視光観測が行われている天体である (e.g. Schramm et al. 1994, Xie et al. 1994, Takalo et al 1992b)。Takalo et al (1996) は 1993年から1995年までモニター観測を行っており、この観測期間中は明るさの変動が激 しく、1995年に V=13.59, 1994年に K=10.59 に達している。また、可視光と赤外線での light curve はランダムに分布した 2,3 日で減衰する fast flare と 1,2 週間で減衰する out burst でよく説明できることが提案されている。これらの flare の発生とスペクトルの振 る舞いには明らかな相関がなかったことも報告されている。また、X 線でも振幅の大きい 変動が報告されている (Maccagni et al 1987)。

図 6.24 に 3C 66A の Spectral Energy Distribution (SED) を示す。赤丸はこれまでに 観測された観測値であり、NED を参照した。黒丸は MITSuME 望遠鏡で得られた flux で ある (MJD = 091223, 081026)。MITSuME 望遠鏡で観測した g', R_C, I_C の flux による spectral index は右上がりであり、可視光域は synchrotron 放射のピーク周波数よりも低 エネルギー側にあることを示している。このことは、可視光の明るさが変動しているが color index に変動がないことと一致する。

6.2.2 AO 0235+16

図 6.25: AO 0235+16 のガンマ線と可視光の light curve および color index の時間変化。 上から 1 ~ 300 GeV の flux (単位は $[10^{-8}$ photon/cm²/s]) の light curve, g', R_C, I_C band の flux (単位は $[10^{-13}$ erg/cm²/s]) の light curve であり、最下グラフが $g' - I_C$ の color index の時間変化である。

2008年1月から観測が開始された AO 0235+16 の観測結果を図 6.25 に示す。上から、 Fermi 衛星による gamma-ray の light curve, MITSuME 望遠鏡による g', R_C , I_C band の light curve、可視光での color index ($g' - I_C$) である。

変動幅が大きく、 I_C band ではもっとも暗いときで約 17.8 等 (~ 7.6×10⁻¹³[erg/cm²/s]) であったものが、最も明るいときで 13.6 等 (~ 3.9×10^{-11} [erg/cm^s/s]) にまで達しており、 flux にして約 50 倍も明るくなっている。MJD = 54700 から MJD = 54800 の 3ヶ月間に 激しい変動を示していたが、MJD = 55070 の観測からは low state の状態が続いている。 このことから、low state 状態から、なんらかの原因によって過活動状態が引き起こされ、 その影響は数ヵ月で終息すると考えられる。定常的な変動ではないため、例えば、blob の

衝突による shock の形成や、高エネルギー電子の一時的な注入などが考えられる。

図 6.26: AO 0235+16 のガンマ線と可視光の flux の相関図。青点は Fermi 衛星で 1day 積 分の flux、赤点は Fermi 衛星で 1 week 積分 flux それぞれとの可視光の対応を表している。 可視光は対応する期間内の flux の平均をとっ ている。

図 6.27: 可視光がガンマ線に比べて 8day delay があるとした場合の AO 0235+16 のガン マ線と可視光の flux の相関図。青点は Fermi 衛星で 1day 積分の flux、赤点は Fermi 衛星 で 1 week 積分 flux それぞれとの可視光の対 応を表している。可視光は対応する期間内の flux の平均をとっている。

3

図 6.26 は可視光とガンマ線の lag なしの場合の相関図である。一方、図 6.27 は可視光 に対してガンマ線が 8 day lag あるとした場合の相関図である。青点は Fermi 衛星で 1 day 積分の flux、赤点は Fermi 衛星で 1 week 積分 の flux であり、可視光は対応する期間内 の flux の平均をとっている。図より可視光とガンマ線には相関があることがわかる。

図 6.28 は可視光とガンマ線の Discrete Correlation Function (DCF) である。bin size を 7days として計算した。この図はガンマ線が可視光に対して ~ 7 days の lag があることことを示しており、実際図 6.27 の方が図 6.26 よりも相関係数がよくなっている。この結果は MJD = 54734 で可視光が最も明るくなったときに対応するガンマ線との lag を表している可能性が高い。

図 6.29 に AO 0235+16 の Spectral Energy Distribution (SED) を示す。赤丸はこれ までに観測された観測値であり、NED を参照した。黒丸は MITSuME 望遠鏡で得られた flux である (MJD = 54734, 55070, 54832)。図より、可視光域は synchrotron 放射のピー

図 6.28: AO 0235+16 の Discrete Correlation Function。~7 days 付近にピークがある。

図 6.29: AO 0235+16 の Spectral Energy Distribution (SED)。赤丸は NED で報告され ている観測点であり、黒丸は MITSuME 望遠鏡による g', R_C, I_C の観測点 (MJD = 54734, 55070, 54832) である。

ク周波数よりも高エネルギー側にあることがわかる。可視光の spectral index はあまり変わらず flux の変動幅が大きい。このことから、synchrotron 放射のピーク位置が変化するよりも、bump の振幅が変化している可能性が高い。

図 6.30: S5 0716+71 のガンマ線と可視光の light curve および color index の時間変化。上 から 1 ~ 300 GeV の flux (単位は $[10^{-8}$ photon/cm²/s]) の light curve, g', R_C, I_C band の flux (単位は $[10^{-12}$ erg/cm²/s]) の light curve であり、最下グラフが $g' - I_C$ の color index の時間変化である。

2008年1月から観測が開始された S5 0716+71 の観測結果を図 6.30 に示す。上から、 Fermi 衛星による gamma-ray の light curve, MITSuME 望遠鏡による g', R_C , I_C band の light curve、可視光での color index ($g' - I_C$) である。

この図からわかるように、可視光の変動が激しく MJD = 54750, 54810, 55110, 55180 に大規模な flare が起っていることがわかる。明るさの変動が非常に大きいのに対して、 color index の変動はなだらかで、巨大 flare での明るさと color index の間に相関は見ら れない。一方、flux が暗く、変動の timescale が flare に対して比較的小さい変動 (MJD = 54920 から MJD = 45970 の変動など)では、color index は明るさと反相関しているよ うに見える。 ガンマ線と可視光の light curve を比較すると、MJD = 54750 と MJD = 55110 の可視 光 flare ではガンマ線の light curve に counter part が見られるのに対し、MJD = 54810 と MJD = 55180 の flare では ガンマ線に明らかな増光は見られない。これは、これら 2 つの flare が起っているときの Spectral Energy Distribution (SED) の形が異なっている ことを示している。つまり、2 つの flare では S5 0716+71 の物理パラメータの値が異な る可能性を示唆している。また、flare の原因となる現象も異なる可能性が高い。

BL Lac 天体の S5 0716+71 は microvariability が知られている BL Lac 天体でもっと も明るいものである。その高い duty cycle は、この天体がつねに active state であるこ とを意味している (Wagner & Witzel 1995)。

図 6.31: S5 0716+71 の Spectral Energy Distribution (SED)。赤丸は NED で報告されて いる観測点であり、黒丸は MITSuME 望遠鏡による g', R_C, I_C の観測点 (MJD = 091223, 081026) である。

図 6.31 はガンマ線と可視光の flux の相関図である。青点は Fermi 衛星で 1day 積分の flux、赤点は Fermi 衛星で 1 week 積分 の flux であり、可視光は対応する期間内の flux の平均をとっている。この図はガンマ線と可視光は常に相関しているわけではないという light curve の結果と一致する。

図 6.32 に S5 0716+71 の Spectral Energy Distribution (SED) を示す。赤丸はこれまで に観測された観測値であり、NED を参照した。黒丸は MITSuME 望遠鏡で得られた flux である (MJD = 54805, 54926)。図より、可視光域は synchrotron 放射のピーク周波数付 近に位置していることがわかる。また、MJD = 54926 の flux level は NED で報告され

図 6.32: S5 0716+71 の Spectral Energy Distribution (SED)。赤丸は NED で報告されて いる観測点であり、黒丸は MITSuME 望遠鏡による g', R_C, I_C の観測点 (MJD = 54805, 54926) である。

ている値と同程度である。このときの spectral index は平らでピーク周波数に位置すると いうことと一致する。一方 MJD = 54805 のときの spectral index は右上がりであり、こ の flare 状態では low state 状態よりもピーク周波数が高エネルギー側にずれることがわ かる。

6.2.4 OJ 287

図 6.33: OJ 287 のガンマ線と可視光の light curve および color index の時間変化。上から 1 ~ 300 GeV の flux (単位は $[10^{-8}$ photon/cm²/s])の light curve, g', R_C, I_C band の flux (単位は $[10^{-12}$ erg/cm²/s])の light curve であり、最下グラフが $g' - I_C$ の color index の時間変化である。

OJ287 は blazar で唯一 binary blackhole であることが確実視されている天体であり、 11 年周期の out burst も確認されている。11 年周期での前回の out burst は 2004 年に 起っており、今回の観測は周期の中間にあたる。図 6.33 に OJ 287 のガンマ線と可視光の light curve を示す。観測は 2008 年 1 月から開始されている。上から、Fermi 衛星による gamma-ray の light curve, MITSuME 望遠鏡による g', R_C , I_C band の light curve、可視 光での color index ($g' - I_C$) である。この図から、timescale の小さい変動と大きい変動が あることがわかる。MJD = 54470 から MJD = 54560 までの変動は timescale が長く変 動幅も大きい。一方。MJD = 54740 から MJD = 54830 までの可視光 flux は timescale が短く変動幅が小さい、細かい変動をしている。color index の変動は小さいが、MJD = 55100 以降で可視光が明るくなっているのに対して、color index は小さくなっている。このことから、bluer-when-brighter の関係があることがわかる。

ガンマ線と可視光の相関では、MJD = 54750 付近の可視光の増光に対して、ガンマ線 も明るくなっているが、可視光が同程度に明るくなっている MJD = 54850 付近にはガン マ線に変動は見られない。また、 MJD =55200 付近でも可視光の増光に対して若干明る くなっている。特出すべきは MJD = 55140, 55141 に R band で 約 0.5 等、前後 (MJD = 55138,55143) よりも明るくなっているのに対して、ガンマ線でも1日で検出している ことである。これは、可視光でのこの timescale の短い増光が有意であることを示すもの であり、かつガンマ線・可視光両方の放射機構に関係する変化 (例えば、高エネルギー電 子の一時的な注入などによる物理パラメータの変化) が起っている可能性も示している。

図 6.34: OJ 287 の Spectral Energy Distribution (SED)。赤丸は NED で報告されてい る観測点であり、黒丸は MITSuME 望遠鏡による g', R_C, I_C の観測点 (MJD = 091223, 081026) である。

図 6.34 は OJ 287 ガンマ線と可視光の flux の相関図である。青点は Fermi 衛星で 1day 積分の flux、赤点は Fermi 衛星で 1 week 積分 の flux であり、可視光は対応する期間内 の flux の平均をとっている。ガンマ線の検出が少ないため、同時観測数が少ないことが わかる。

図 6.35 に OJ 287 の Spectral Energy Distribution (SED) を示す。赤丸はこれまでに 観測された観測値であり、NED を参照した。黒丸は MITSuME 望遠鏡で得られた flux で ある (MJD = 55140, 54534)。図より MJD = 55140 のときと MJD = 54534 のときで

図 6.35: OJ 287 の Spectral Energy Distribution (SED)。赤丸は NED で報告されている 観測点であり、黒丸は MITSuME 望遠鏡による g', R_C , I_C の観測点 (MJD = 55140, 54534) である。

spectral index の傾きが異なることがわかる。また、NED で報告されている多波長 flux から、可視光域が synchrotron 放射のピーク周波数よりも高エネルギー側に位置している ことがわかる。これは MITSuME 望遠鏡で観測した g', R_C, I_C band の flux の spectral index が右下がりであることと一致する。low state 時と flare 時で spectral index の傾き が異なることから、synchrotron 放射のピーク周波数が高エネルギー側にシフトした可能 性がある。

図 6.36: Mrk 421 のガンマ線と可視光の light curve および color index の時間変化。上から 1 ~ 300 GeV の flux (単位は $[10^{-8}$ photon/cm²/s]) の light curve, g', R_C, I_C band の flux (単位は $[10^{-12}$ erg/cm²/s]) の light curve であり、最下グラフが $g' - I_C$ の color index の時間変化である。

Mrk 421 は有名な HBL 天体であり、z = 0.015 と近いため、jet 成分に対して母銀河の 影響は無視できない。図 6.36 はガンマ線と可視光の light curve であり、可視光は Nilsson et al. 2009 を用いて見積もった母銀河の flux を引いてある。観測は 2008 年 1 月から開 始されている。上から、Fermi 衛星による gamma-ray の light curve, MITSuME 望遠鏡 による g', R_C , I_C band の light curve、可視光での color index ($g' - I_C$) である。全体的 に長い timescale で可視光は変動しており、その変動に対して color index も増減してい る。flux が大きくなると color index は小さくなっており、bluer-when-brighter の傾向が ある。最も暗いときと最も明るいときの差は約 3 倍である。

ガンマ線と可視光の light curve の間にはあきらかな相関は見られない。1週間積分の

図 6.37: Mrk 421 のガンマ線と可視光の flux の相関図。青点は Fermi 衛星で 1day 積分の flux、赤点は Fermi 衛星で 1 week 積分 flux それぞれとの可視光の対応を表している。 可視光は対応する期間内の flux の平均をとっている。

図 6.38: Mrk 421 の Spectral Energy Distribution (SED)。赤丸は NED で報告されて いる観測点であり、黒丸は MITSuME 望遠鏡による g', R_C, I_C の観測点 (MJD = 54514, 54534) である。

ガンマ線の flux 値はほぼ一定であるが、1日検出できた flux は細かい変動があるように も見える。しかし、1日検出の flux はエラーが大きく、可視光と直接比較するには信頼性 が乏しいと考えられる。

図 6.37 は Mrk 421 のガンマ線と可視光の flux の相関図である。青点は Fermi 衛星で 1day 積分の flux、赤点は Fermi 衛星で 1 week 積分 の flux であり、可視光は対応する期 間内の flux の平均をとっている。図より、可視光とガンマ線の間に明らかな相関はない ことがわかる。

図 6.38 に Mrk 421 の Spectral Energy Distribution (SED) を示す。赤丸はこれまで に観測された観測値であり、NED を参照した。黒丸は MITSuME 望遠鏡で得られた flux である (MJD = 54514, 54534)。図より、可視光域は synchrotron 放射のピーク周波数よ りも高エネルギー側にあることがわかる。これは、flux level の異なる MJD = 54514 と MJD = 54534 で spectral index の傾きが変化していないことと一致する。

図 6.39: ON 231 のガンマ線と可視光の light curve および color index の時間変化。上から 1 ~ 300 GeV の flux (単位は $[10^{-8}$ photon/cm²/s])の light curve, g', R_C, I_C band の flux (単位は $[10^{-12}$ erg/cm²/s])の light curve であり、最下グラフが $g' - I_C$ の color index の時間変化である。

図 6.39 に ON 231 のガンマ線と可視光の light curve を示す。上から、Fermi 衛星による gamma-ray の light curve, MITSuME 望遠鏡による g', R_C , I_C band の light curve、可視光での color index ($g' - I_C$) である。2008 年 11 月に観測を開始しており、2009 年 2 月の flare を検出している。MJD = 55130 以降の観測では falre は検出されておらず変動 も小さい。このときの flux は 約 1.7×10^{-11} [erg/cm²/s] で、これが low state 状態と考 えられる。一方 MJD ~ 54880 の flare では flux は 3.5×10^{-11} [erg/cm²/s] に達し、low state 状態に比べ約 2 倍明るくなっている。

MJD ~ 54915 では、明るさが暗くなるのに対して color index は増加している。つま リ redder-when-brighter の傾向があるが、明るさに変動に対して、color index 変動は 0.1

程度と小さい。

図 6.40: ON 231 のガンマ線と可視光の flux の相関図。青点は Fermi 衛星で 1 day 積分の flux、赤点は Fermi 衛星で 1 week 積分 flux それぞれとの可視光の対応を表している。可 視光は対応する期間内の flux の平均をとって いる。

図 6.40 は ON 231 のガンマ線と可視光の flux の相関図である。青点は Fermi 衛星で 1day 積分の flux、赤点は Fermi 衛星で 1 week 積分 の flux であり、可視光は対応する期 間内の flux の平均をとっている。図より、可視光とガンマ線には相関がありそうに見え るが、ガンマ線での検出数が少ないためもっと対応観測点を増やす必要がある。

図 6.41 はガンマ線と可視光の Discrete Correlation Function (DCF) である。ピークは 0 lag に位置しているが、エラーが大きくガンマ線の観測点を増やす必要がある。

図 6.42 に ON 231 の Spectral Energy Distribution (SED) を示す。赤丸はこれまでに 観測された観測値であり、NED を参照した。黒丸は MITSuME 望遠鏡で得られた flux で ある (MJD = 54932, 55141)。図より、可視光域が synchrotron 放射のピーク周波数付近 に位置することがわかる。また、MJD = 55141 の flux level は NED で報告されている 可視光の観測 flux level と同程度であることがわかる。MJD = 54932 では spectral index が 右上がりであるのに対して、MJD = 55141 では右下がりである。つまり flare 時には synchrotron 放射のピーク周波数が高エネルギー側にシフトすることによって可視光域の

図 6.42: ON231 の Spectral Energy Distribution (SED)。赤丸は NED で報告されている 観測点であり、黒丸は MITSuME 望遠鏡による g', R_C , I_C の観測点 (MJD = 54932, 55141) である。

spectral index が右上がりに変化したと解釈することができる。

図 6.43: 3C 273 のガンマ線と可視光の light curve および color index の時間変化。上か ら 1 ~ 300 GeV の flux (単位は $[10^{-7}$ photon/cm²/s]) の light curve, g', R_C, I_C band の flux (単位は $[10^{-12}$ erg/cm²/s]) の light curve であり、最下グラフが $g' - I_C$ の color index の時間変化である。

図 6.43 に 3C 273 のガンマ線と可視光の light curve を示す。上から、Fermi 衛星による gamma-ray の light curve, MITSuME 望遠鏡による g', R_C , I_C band の light curve、可視 光での color index ($g' - I_C$) である。図からわかるようにガンマ線の変動が激しく、明る いことが分かる。一方、可視光に明らかな変動はみられない。MJD = 54880 から MJD = 54900 ではガンマ線も暗く変動が小さいため、可視光と相関がありそうに見えるが、MJD = 55160 から MJD = 55180 まではガンマ線で明るく、変動が激しいにも関わらず可視光 は変動せず flux も変わっていない。また、color index にも明らかな変動は見られない。

3C 273 は可視光域では disk などからの熱的放射成分が jet 成分よりも優位であること が指摘されている。熱的成分は定常的な放射のため、可視光域の変動が小さいと解釈する

図 6.44: 3C 273 の Spectral Energy Distribution (SED)。赤丸は NED で報告されている観測点であり、黒丸は MITSuME 望遠鏡による g', R_C, I_C の観測点 (MJD = 54516) である。

ことができる。そのため、jet 成分が熱的成分より小さいということから、jet 成分の上限 値を決めることができる。つまり、我々の観測結果から R band の jet 成分は平均 flux \sim $1.3 \times 10^{-10} [erg/cm^2/s]$ より小さいと言える。

図 6.44 に 3C 273 の Spectral Energy Distribution (SED) を示す。赤丸はこれまでに観 測された観測値であり、NED を参照した。黒丸は MITSuME 望遠鏡で得られた flux であ る (MJD = 54516)。図より、MITSuME 望遠鏡で得られた g', R_C, I_C の flux が NED で報 告されている可視光の flux と同程度であることがわかる。また、可視光域が synchrotron 放射のピーク周波数よりも高エネルギー側にあり、可視光域では acrretion disk などから の熱的放射が卓越しており、可視光の spectral index が右上がりになっていることがわ かる。

図 6.45: 3C 279 のガンマ線と可視光の light curve および color index の時間変化。上から 1 ~ 300 GeV の flux (単位は $[10^{-8}$ photon/cm²/s])の light curve, g', R_C, I_C band の flux (単位は $[10^{-12}$ erg/cm²/s])の light curve であり、最下グラフが $g' - I_C$ の color index の時間変化である。

3C 279 のガンマ線と可視光の light curve を図 6.45 に示す。上から、Fermi 衛星による gamma-ray の light curve, MITSuME 望遠鏡による g', R_C , I_C band の light curve、可 視光での color index ($g' - I_C$) である。MJD = 54880 の flare はガンマ線・可視光両方 で見られ、その後の減光もよく相関している。ガンマ線のピークは MJD = 54880 である が、可視光 (I_C band) では MJD = 54887 である。つまり、可視光のほうがガンマ線に比 べて7日程度遅れている可能性がある。

可視光の flux が小さくなると、color index は大きくなる傾向 (bluer-when-brighter) がある。特に MJD = 55160 以降の color index はそれ以前に比べて約 0.2 大きくなって いる。

図 6.46: 3C 279 のガンマ線と可視光の flux の相関図。青点は Fermi 衛星で 1day 積分の flux、赤点は Fermi 衛星で 1 week 積分 flux それぞれとの可視光の対応を表している。可 視光は対応する期間内の flux の平均をとっている。

図 6.47: 3C 279 の Spectral Energy Distribution (SED)。赤丸は NED で報告されている 観測点であり、黒丸は MITSuME 望遠鏡による g', R_C, I_C の観測点 (MJD = 54884, 55202) である。

図 6.46 は 3C 279 のガンマ線と可視光の flux の相関図である。青点は Fermi 衛星で 1day 積分の flux、赤点は Fermi 衛星で 1 week 積分 の flux であり、可視光は対応する 期間内の flux の平均をとっている。図より、可視光とガンマ線に相関があることがわかる。観測点を増やすことでより正確に相関性を調べる余地がある。

図 6.47 に 3C 279 の Spectral Energy Distribution (SED) を示す。赤丸はこれまでに観 測された観測値であり、NED を参照した。黒丸は MITSuME 望遠鏡で得られた flux であ る (MJD = 54884, 55202)。図より、可視光域が synchrotron 放射のピーク周波数よりも高 エネルギー側にあることがわかる。これは、MITSuME 望遠鏡で観測した g', R_C , I_C band の flux による spectral index が右下がりであることと一致する。また、MJD = 55202 の flux level は NED で報告されている可視光の low state flux と同程度であることがわかる。

図 6.48: PKS 1502+106 のガンマ線と可視光の light curve および color index の時間変 化。上から 1 ~ 300 GeV の flux (単位は $[10^{-8}$ photon/cm²/s]) の light curve, g', R_C, I_C band の flux (単位は $[10^{-12}$ erg/cm²/s]) の light curve であり、最下グラフが $g' - I_C$ の color index の時間変化である。

図 6.48 に PKS 1502+106 のガンマ線と可視光の light curve を示す。上から、Fermi 衛 星による gamma-ray の light curve, MITSuME 望遠鏡による g', R_C , I_C band の light curve、可視光での color index ($g' - I_C$) である。MJD = 54980 以降は、ガンマ線は Fermi 衛星の検出限界よりも暗くなっており、優位な flux は報告されていない。可視光でも MJD = 55040 以降は MITSuME 望遠鏡の限界等級よりも暗くなっている。

図?? は PKS 1502+106 の ガンマ線と可視光の flux の相関図である。青点は Fermi 衛星で 1day 積分の flux、赤点は Fermi 衛星で 1 week 積分 の flux であり、可視光は対応 する期間内の flux の平均をとっている。図より、ガンマ線と可視光には相関があるよう に見える。これは light curve での MJD = 54950 から MJD = 54980 までの減光部分が

図 6.49: PKS 1502+106 のガンマ線と可視光の flux の相関図。青点は Fermi 衛星で 1day 積分の flux、赤点は Fermi 衛星で 1 week 積分 flux それぞれとの可視光の対応を表して いる。可視光は対応する期間内の flux の平均をとっている。

図 6.50: PKS1502+106 の Spectral Energy Distribution (SED)。赤丸は NED で報告され ている観測点であり、黒丸は MITSuME 望遠鏡による g', R_C, I_C の観測点 (MJD = 54952, 55032) である。

相関していることを示している。さらに観測点を増やす必要がある。

図 6.50 に PKS 1502+106 の Spectral Energy Distribution (SED) を示す。赤丸はこれ

までに観測された観測値であり、NED を参照した。黒丸は MITSuME 望遠鏡で得られた flux である (MJD = 54952, 55032)。図より、可視光域は synchrotron 放射のピーク周波 数より高エネルギー側に位置していることがわかる。これは MITSuME 望遠鏡の観測で 得られた g', R_C, I_C band の spectral index が右下がりであることと一致する。

図 6.51: 4C 38.41 のガンマ線と可視光の light curve および color index の時間変化。上 から 1 ~ 300 GeV の flux (単位は $[10^{-8}$ photon/cm²/s]) の light curve, g', R_C, I_C band の flux (単位は $[10^{-13}$ erg/cm²/s]) の light curve であり、最下グラフが $g' - I_C$ の color index の時間変化である。

図 6.51 に 4C 38.41 のガンマ線と可視光の light curve を示す。上から、Fermi 衛星に よる gamma-ray の light curve, MITSuME 望遠鏡による g', R_C , I_C band の light curve、 可視光での color index $(g' - I_C)$ である。可視光とガンマ線の flux には相関があり、特 に MJD = 55040 から MJD = 55080 までの増光はガンマ線・可視光両方に表れている。 color index の変動が大きく、可視光の flux が大きくなると color index も大きくなる傾 向 (redder-when-brighter) がある。

図 6.52 は 4C 38.41 の ガンマ線と可視光の flux の相関図である。青点は Fermi 衛星で 1day 積分の flux、赤点は Fermi 衛星で 1 week 積分 の flux であり、可視光は対応する 期間内の flux の平均をとっている。図より、全体的には可視光とガンマ線に相関がある

図 6.52: 4C 38.41 のガンマ線と可視光の flux の相関図。青点は Fermi 衛星で 1day 積分 の flux、赤点は Fermi 衛星で 1 week 積分 flux それぞれとの可視光の対応を表している。 可視光は対応する期間内の flux の平均をとっている。

図 6.53: 4C 38.41 の Spectral Energy Distribution (SED)。赤丸は NED で報告されて いる観測点であり、黒丸は MITSuME 望遠鏡による g', R_C, I_C の観測点 (MJD = 55038, 54995) である。

が、可視光の flux が 2.0×10^{-12} [erg/cm²/s] より小さくなると、相関がなくなることがわ かる。flare 時に相関していることは、light curve での MJD = 55040 から MJD = 55080

までの flare 状態がガンマ線・可視光の両方で見られることなどからもわかる。

図 6.53 に 4C 38.41 の Spectral Energy Distribution (SED) を示す。赤丸はこれまで に観測された観測値であり、NED を参照した。黒丸は MITSuME 望遠鏡で得られた flux である (MJD = 55038, 54995)。図より、可視光域は synchrotron 放射のピーク周波数よ り高エネルギー側に位置していると予測されるが、MITSuME 望遠鏡の観測で得られた g', R_C, I_C band の spectral index は右上がりである。これは、可視光域では acrretion disk などからの熱的放射が jet 成分よりも大きい、もしくは同程度あることを示していると考 えられる。flare 時の spectral index が low state 時よりも flat になっていることからも、 jet 成分の増加によって 熱的成分が相対的に小さくなり spectral index が変化したと解釈 できる。

図 6.54: Mrk 501 のガンマ線と可視光の light curve および color index の時間変化。上から 1 ~ 300 GeV の flux (単位は $[10^{-8}$ photon/cm²/s]) の light curve, g', R_C, I_C band の flux (単位は $[10^{-12}$ erg/cm²/s]) の light curve であり、最下グラフが $g' - I_C$ の color index の時間変化である。

Mrk 501 のガンマ線と可視光の light curve を図 6.54 に示す。上から、Fermi 衛星による gamma-ray の light curve, MITSuME 望遠鏡による g', R_C , I_C band の light curve, 可視光での color index ($g' - I_C$) である。図より、ガンマ線と可視光の間に優位な相関が見られない。可視光では細かい変動が定常的に見られ、大規模なフレアなどは起こっていない。また、ガンマ線の lightcurve も細かい変動を示している。一方、color index には明らかな変動はみられない。

図?? に Mrk 501 の Spectral Energy Distribution (SED) を示す。赤丸はこれまでに観 測された観測値であり、NED を参照した。黒丸は MITSuME 望遠鏡で得られた flux であ る (MJD = 54930)。図より、可視光域は synchrotron 放射のピーク周波数よりも低エネ

107

図 6.55: Mrk 501 の Spectral Energy Distribution (SED)。赤丸は NED で報告されてい る観測点であり、黒丸は MITSuME 望遠鏡による g', R_C, I_C の観測点 (MJD = 54930) で ある。

ルギー側に位置するのがわかる。また、MITSuME 望遠鏡の観測で得られた可視光 flux は NED で報告されている可視光 flux level と同程度であることがわかる。

図 6.56: 1ES 1959+650 のガンマ線と可視光の light curve および color index の時間変化。 上から 1 ~ 300 GeV の flux (単位は $[10^{-8}$ photon/cm²/s]) の light curve, g', R_C, I_C band の flux (単位は $[10^{-12}$ erg/cm²/s]) の light curve であり、最下グラフが $g' - I_C$ の color index の時間変化である。

図 6.56 に 1ES1959+650 のガンマ線と可視光の light curve を示す。上から、Fermi 衛星 による gamma-ray の light curve, MITSuME 望遠鏡による g', R_C , I_C band の light curve, 可視光での color index ($g' - I_C$) である。この天体は日本で通年を通して観測できる天体 であり、明野 MITSuME 望遠鏡で観測点が最も多い天体である。一方、ガンマ線では暗く 検出できた観測点が少ない。MJD = 54540 から MJD = 54700 までは変動が小さく flux も小さい。この後徐々に増光し、MJD = 55028 にピーク (flux = 5.97×10^{-11} [erg/cm²/2]) に達している。このとき color index は小さくなっており bluer-when-brighter の傾向があ ることがわかる。ガンマ線ではピーク時 (MJD = 55027) に検出があるが、可視光で暗い ときに検出された flux と同程度の明るさで、可視光と相関した増光は見られない。

図 6.57: 1ES 1959+650 のガンマ線と可視光の flux の相関図。青点は Fermi 衛星で 1day 積分の flux、赤点は Fermi 衛星で 1 week 積分 flux それぞれとの可視光の対応を表して いる。可視光は対応する期間内の flux の平均をとっている。

図 6.57 は 1ES 1959+650 の ガンマ線と可視光の flux の相関図である。青点は Fermi 衛星で 1day 積分の flux、赤点は Fermi 衛星で 1 week 積分 の flux であり、可視光は対 応する期間内の flux の平均をとっている。

図 6.58 に 1ES 1959+650 の Spectral Energy Distribution (SED) を示す。赤丸はこれ までに観測された観測値であり、NED を参照した。黒丸は MITSuME 望遠鏡で得られた flux である (MJD = 55028, 54542)。図より、可視光域は synchrotron 放射のピーク周波 数よりも低エネルギー側に位置していることがわかる。これは MITSuME 望遠鏡の観測 で得られた g', R_C, I_C band の spectral index が右上がりであることと一致する。また、 MITSuME 望遠鏡の観測結果は、NED で報告されている flux level と同程度であること がわかる。

110

図 6.58: 1ES 1959+650 の Spectral Energy Distribution (SED)。赤丸は NED で報告され ている観測点であり、黒丸は MITSuME 望遠鏡による g', R_C, I_C の観測点 (MJD = 55028, 54542) である。

6.2.13 BL Lac

図 6.59 に BL Lac のガンマ線と可視光の light curve を示す。上から、Fermi 衛星によ る gamma-ray の light curve, MITSuME 望遠鏡による g', R_C , I_C band の light curve、 可視光での color index ($g' - I_C$) である。岡山 MITSuME 望遠鏡でも観測されており、 MITSuME 望遠鏡による観測点は 2 年で 247 点にのぼる。しかし、ガンマ線では暗く観 測点が少ない。そのため、ガンマ線と可視光の間の相関関係については不明である。可視 光の light curve では timescale の長い変動の上に timescale の短い変動がみられる。し かし、MJD = 55040 から MJD = 55070 までは細かい変動がみられなくなっており、そ の後急激に明るくなっている。MITSuME 望遠鏡の観測はこの flare の増光から減光まで を完全にカバーしており、flare の timescale を求める指標になる。また、可視光と color index には bluer-when-brighter の明らかな相関があることがわかる。

図 6.60 に BL Lac の Spectral Energy Distribution (SED) を示す。赤丸はこれまでに観 測された観測値であり、NED を参照した。黒丸は MITSuME 望遠鏡で得られた flux であ る (MJD = 54586, 55057)。図より、可視光域は synchrotron 放射のピーク周波数よりも 高エネルギー側に位置していることがわかる。これは MITSuME 望遠鏡の観測で得られた g', R_C, I_C band の spectral index が右下がりであることと一致する。また、MJD = 54586

図 6.59: BL Lac のガンマ線と可視光の light curve および color index の時間変化。上か ら 1 ~ 300 GeV の flux (単位は $[10^{-8}$ photon/cm²/s]) の light curve, g', R_C, I_C band の flux (単位は $[10^{-12}$ erg/cm²/s]) の light curve であり、最下グラフが $g' - I_C$ の color index の時間変化である。

のときの spectral index は MJD = 55057 のときよりもゆるやかであり、物理パラーメー タの値が変化することによって、synchrotron 放射のピーク周波数が高エネルギー側にシ フトしたなどが考えられる。

図 6.60: BL Lac の Spectral Energy Distribution (SED)。赤丸は NED で報告されている 観測点であり、黒丸は MITSuME 望遠鏡による g', R_C, I_C の観測点 (MJD = 54586, 55057) である。

6.2.14 3C 454.3

図 6.61 に 3C 454.3 のガンマ線と可視光の light curve を示す。上から、Fermi 衛星によ る gamma-ray の light curve, MITSuME 望遠鏡による g', R_C , I_C band の light curve、可 視光での color index ($g' - I_C$) である。この天体は明野 MITSuME 望遠鏡でもっとも観測 期間の長い天体で、観測開始は 2007 年 11 月と最も早い。また、Fermi 衛星の Monitored Source List のなかで、観測点が最も多い天体の 1 つである。図より、ガンマ線・可視光と もに変動が激しいことがわかる。また、ガンマ線と可視光の light curve の間に強い相関 があることがわかる。可視光と color index の間には明らかな相関があり、redder-whenbighter の傾向がある。R band で flux が 3.0×10^{-11} [erg/cm²/s] より小さい間は、flux と color index の間に相関があるが、flux が 3.0×10^{-11} [erg/cm²/s] より大きくなっても color index は約 1.6 より大きくならないことがわかる。

3C 454.3 は low state で disk などからの熱的放射 による blue bump が報告されており この color index の傾向は、flux が 3.0×10^{-11} [erg/cm²/s] より小さくなると、この bump による放射が synchrotron 放射と同程度になり、この熱的成分は R_C band よりも高波長 側 (紫外帯域)にピークがあるため color index が青くなると考えることができる。

MJD = 55172 付近に大規模なフレアが起こっており、ガンマ線・可視光両方で検出され

113

図 6.61: 3C 454.3 のガンマ線と可視光の light curve および color index の時間変化。上 から 1 ~ 300 GeV の flux (単位は $[10^{-7}$ photon/cm²/s]) の light curve, g', R_C, I_C band の flux (単位は $[10^{-12}$ erg/cm²/s]) の light curve であり、最下グラフが $g' - I_C$ の color index の時間変化である。

ている。 R_C band では 6.99×10^{-11} [erg/cm²/s] に達しており、MJD = 54770 から MJD = 54820 の low state と比較してガンマ線で約 20 倍、可視光で約 4 倍に明るくなっている。 図 6.62 に 3C454.3 の大規模フレア時の light curve を示す。flare 部分の増光 (R band flux > 3.0×10^{-11} [erg/cm²/s]) と color index の間に相関はない。flare のピーク位置はガンマ線では MJD = 55166 であるのに対して、可視光では少なくとも MJD = 55172 以降 であるように見える。つまり、ガンマ線と可視光の間にガンマ線が先行する約 6 日のラグ の可能性がある。3C 454.3 はこれまでにさまざまな望遠鏡や衛星で観測されており、ガンマ線の放射は External Compton (EC) が優位であると考えられている。

図 6.63 は可視光とガンマ線の相関図である。横軸がガンマ線の flux で 縦軸が可視光 の flux である。この図から可視光とガンマ線に強い相関があるのがわかる。可視光が暗

図 6.62: フレア時の 3C 454.3 のガンマ線と可視光の light curve および color index の時間 変化。上から 1 ~ 300 GeV の flux (単位は $[10^{-7}$ photon/cm²/s]) の light curve, g', R_C, I_C band の flux (単位は $[10^{-12}$ erg/cm²/s]) の light curve であり、最下グラフが $g' - I_C$ の color index の時間変化である。

くなると $(F_R \sim < 1.5 \times 10^{-11})$ 、 color index $(g' - I_C)$ も小さくなる。 つまり bluer-whenbrighter の傾向がある。このことから、UV 成分の割合が増加していることがわかる。つ まり acreetion disk からの熱的な放射による寄与が synchrotron 放射と同程度になると考

図 6.63: 3C 454.3 のガンマ線と可視光の flux の相関図。青点は Fermi 衛星で 1day 積分の flux、赤点は Fermi 衛星で 1 week 積分 flux それぞれとの可視光の対応を表している。可 視光は対応する期間内の flux の平均をとって いる。

える。

図 6.64 は可視光とガンマ線の Discrete Correlation Function (DCF) である。この図か ら、DCF のピークが 3 day lag にあることがわかる。一方、"sholders" による中心は 約 8 day lag にある。この 8 day lag は MJD = 55190 付近の巨大 flare でのガンマ線と可視 光のピーク位置のずれと一致する。

図 6.65 に 3C 454.3 の Spectral Energy Distribution (SED) を示す。赤丸はこれまでに 観測された観測値であり、NED を参照した。黒丸は MITSuME 望遠鏡で得られた flux で ある (MJD = 54436, 54811)。図より、可視光域は synchrotron 放射のピーク周波数より も高エネルギー側に位置していることがわかる。MJD = 54436 では spectral index は右 下がりになっており、synchrotron 成分のピークより高エネルギー側と一致する。一方、 MJD = 54811 では、spectral idnex は右上がりになっており、これは可視光域で暗くな ると、acrretion disk からの熱的放射が synchtoron 成分と同程度になることで紫外線成分 が増加し、spectral index が右上がりになるという解釈と一致する。

図 6.65: 3C 454.3 の Spectral Energy Distribution (SED)。赤丸は NED で報告されて いる観測点であり、黒丸は MITSuME 望遠鏡による g', R_C, I_C の観測点 (MJD = 54436, 54811) である。

6.2.15 1ES 2344+514

図 6.66 に 1ES 2344+514 の light curve を示す。上から、Fermi 衛星による gamma-ray の light curve, MITSuME 望遠鏡による g', R_C , I_C band の light curve、可視光での color index $(g' - I_C)$ である。ガンマ線は暗く、優位な flux が報告されている観測点は 2 点だ けである。可視光の light curve には細かい変動がみられるが大きな flare などは見られ ない。また、color index も変動が小さく、light curve と明らかな相関は見られない。 I_C band の light curve に比べ、g' band の 変動は大きい傾向があり、MJD = 55000 から MJD = 55050 までの 4 点の観測点では、g' band の flux と color index は反相関の関係 がみられるが、 R_C , I_C band とは相関が見られない。

図 6.67 に 1ES 2344+514 の Spectral Energy Distribution (SED) を示す。赤丸はこれ までに観測された観測値であり、NED を参照した。黒丸は MITSuME 望遠鏡で得られた flux である (MJD = 54803)。図より、MITSuME 望遠鏡で観測された可視光の flux が NED で報告されている flux level と同程度であることがわかる。

図 6.66: 1ES 2344+514 のガンマ線と可視光の light curve および color index の時間変化。 上から 1 ~ 300 GeV の flux (単位は $[10^{-8}$ photon/cm²/s]) の light curve, g', R_C, I_C band の flux (単位は $[10^{-12}$ erg/cm²/s]) の light curve であり、最下グラフが $g' - I_C$ の color index の時間変化である。

図 6.67: 1ES 2344+514 の Spectral Energy Distribution (SED)。赤丸は NED で報告され ている観測点であり、黒丸は MITSuME 望遠鏡による g', R_C, I_C の観測点 (MJD = 54803) である。

第7章 Discussion

7.1 Structure Function

MITSuME 望遠鏡によって得られた可視光 (Rc band) データから、structure function 解析を通して、 power density spectra (PDS) を測定した。我々の観測は数ヵ月から2年に 渡り、1-10days の時間分解能を持つ。データから PDS と 数十日未満の timescale の τ_{char} の存在可能性を調べることができる。これにより、エネルギー生成メカニズムの起源 と普遍性を制約できる可能性がある。いくつかの brazar では数十日の time scale と数年 の time scale を持つ傾向が示唆されている (例えば AO 0235+16 は 5-6 年の preiodicity が示唆されている Raiteri et al. 2001)。

図 7.1 に我々の 20 個の天体の binned structure function を示す。これらは、典型的に は 1.4 節で示した概略図 (図 1.2) の特徴的な形を表している。観測の不確定性による影響 を除くために、予測される shortest time scale での flat plateau は除いている。

structure function $S(\tau)$ の振動は mean-squared amplitude variations が 2σ のオーダー になる timescale で起る。これらの longer timescales では我々の structure function は 可 能なデータペアの数が減ることによって比較的不明確になっている。これにより、詳細な 分析を複雑にしている。これらの振動が個々の天体によって異なる多様性を持っている ことは、主に個々の天体の変動の特徴を反映すると考えられる。この振動は、1つもしく は2つの大きいフレア (アウトバースト)、有限の観測期間、、非一定の効果、例えばモニ ター観測の最初と最後で異なる flux level、また/もしくは 準周期的な振動 が有意であ る light cruves からの結果である。structure function のこれらの long timescale でのす べての特徴は上記の理由から注意してみるべきである。

structure function の power-law slope は intrinsic variations の原因である物理的メカ ニズムに依存する可能性が大きい。そのため、我々はこの傾きをモデル $logS = blog\tau + a$ を使って、適切な timescale 範囲 $\tau_{min} \leq \tau \leq \tau_{max}$ でフィッティングすることで定量化し た。 τ_{min}, τ_{max} は目視検査 (visual inspection) で決定した。結果は表 7.1 に示す。(1) は天 体名、(2) は観測点数、(3) はサンプリング間隔、(4) は fitting に使用した timescale 範囲

120

の最小値、(5) は fitting に使用した timescale 範囲の最大値、(6) は fitting に使用した観 測点数、(7) は fitting の χ^2_{ν} 、(8) は fitting から求めた power-low index b である。また、 各天体の structure function を図 7.2 から図 7.21 に示す。1ES 0033+595, GC 0109+224, ON 325, PG 1222+216, 3C 273, PKS 1502+106, PG 1553+113, IZW 187, OT 081, CTA 102 3C371, 4C38.41, PG1424+240, 1ES1011+496, 1ES0806+524, J0805+6144, は、有意 な structure function を計算するには観測点の数が十分ではないので、ここでは議論しな い。主に観測点が 50 以上の天体を選出した。

stationary time series に対して、structure function power-law slape と power density spectrum slope の間にはシンプルな関係が存在することを多くの研究者が言及している (e.g., Hufnagel & Bregman 1992; Kawaguchi et al. 1998) 。しかし、Paltani (1999) はこ れは無限大の時系列という限界でみ正しくなるということを指摘しており、それ以外で はいくつかのバイアスが導入される可能性が高い。真の変動が基礎になっている適切な sturcture function サンプルであれば、これらのバイアスは最小化されると考えられる。 その場合は、structure fuction power-law slope と power density spectrum slope 間の上記 の関係性は α の良い first-order 近似を与えられる。

図 7.1 は各天体から求めた structure function の分布図である。縦軸は R_C band の light curve の variability amplitude であり、横軸は structure function の power-law slope の index b である。赤丸が FSRQ, 水色四角が BL Lac, 緑三角が LBL, 青丸(中抜き)が HBL, 黒四角(中抜き)が分類が不明をそれぞれ表している。図より、全体的には variability amplitude と structure function の index b には相関が無いように見えるが、FSRQ 天体 にだけ着目すると、variability amplitude が大きくなると structure function も大きくな る傾向がある。

Source	Т	δ	$ au_{min}$	$ au_{max}$	Ν	χ^2_{ν}	b
	(days)	(days)	(days)	(days)			
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
3C 66A	181	1	1	22	22	0.96	0.75 ± 0.04
DA 055	84	1	1	29	29	0.59	1.19 ± 0.04
AO 0235+16	87	1	1	18	18	1.76	0.97 ± 0.14
$1 ES \ 0647 + 250$	57	1	2	13	12	0.57	1.02 ± 0.18
S5 0716+71	220	1	1	17	17	0.88	0.83 ± 0.04
PKS 0735+17	162	1	1	6	6	0.24	1.37 ± 0.13
Q $0827 + 243$	88	1	2	6	5	0.42	2.00 ± 0.37
OJ 287	178	1	1	7	7	1.24	0.81 ± 0.12
QSOB 0917+449	66	1	1	18	18	0.91	0.77 ± 0.09
Mrk 421	79	1	1	12	12	0.65	1.06 ± 0.11
4C 49.22	94	1	1	15	15	0.50	0.53 ± 0.11
TON 599	80	1	1	20	20	0.57	1.20 ± 0.07
$1 \text{ES} \ 1218 + 304$	84	1	1	19	19	1.02	1.63 ± 0.12
ON 231	51	1	1	10	10	1.95	0.80 ± 0.20
3C 279	44	1	1	4	4	1.09	1.47 ± 0.25
PKS 1510-08	54	1	1	26	26	1.08	0.65 ± 0.08
3C 345	106	1	3	19	17	1.43	0.73 ± 0.18
1 ES 1959 + 650	166	1	2	20	19	1.06	1.47 ± 0.13
BL Lac	245	1	1	10	10	1.29	0.65 ± 0.06
3C 454.3	145	1	1	14	14	0.81	0.74 ± 0.09

表 7.1: structure function 解析を行った天体とパラメータ

図 7.1: 可視光 (R_C band) の variability amplitude と structure function の index b の分 布図。縦軸が variability amplitude であり、横軸は structure function の power-law slope の index b である。赤丸が FSRQ, 水色四角が BL Lac, 緑三角が LBL, 青丸(中抜き) が HBL, 黒四角(中抜き)が分類が不明をそれぞれ表している。全体的には variability amplitude と structure function の index b には相関が無いように見えるが、FSRQ 天体 にだけ着目すると、variability amplitude が大きくなると structure function も大きくな る傾向がある。

7.1.1 DA 055

図 7.2 に DA 055 の R_C band light curve から計算した Structure Function を示す。 Normalized log(SF) が platau になるところで、0.3 に達している。このことから、この 折れ曲がりの時間が DA055 の characteristic timescale の 1 つである可能性が高い。つ まり、DA055 は optical で約 20 日の timescale を持っている。また、index b は 0.75 で ある。

7.1.2 3C 66A

図 7.3 に 3C 66A の R_C band light curve から計算した Structure Function を示す。SF が plateau になるところの timescale は約 20 日である。その後 Normalized log(SF) は 0.3 に漸近している。また、index b は 1.19 である。

 \boxtimes 7.3: structure function of 3C 66A

Takalo et al (1996) では 145日の caracteristic variability time scale が示されているが、 我々の観測結果では 100日を超える timescale に対して優位な結果を得られるのに十分 な観測点が得られなかったため、この提案を確認することはできなかった。

さらに、Takalo et al. 1996 では、spectral slope $\alpha = 1.0$ は shot-noise type の振る舞い で特徴づけられる変動を示していると主張している。また、power-law model ($f_{\nu} = k\nu^{-\alpha}$) で spectral index の平均値を求めており、可視光だけから導出した $\alpha = 1.6$ と可視光赤外 線から導出した $\alpha = 1.0$ から、可視光と赤外線の間に break があると主張している。こ の傾向は Worrall et al. 1984 でも報告されている。

7.1.3 AO 0235+16

図 7.4 に AO 0235+16 の R_C band light curve から計算した Structure Function を示 す。1 bin のなかのばらつきが大きいため、エラーが大きくなっている。これは、定常的 な timescale の変動に加えて、フレアなど変動が激しい要素によって timescale にばらつ きがでているためと考えられる。index b は 1.76 である。

7.1.4 1ES 0647+250

図 7.5 に 1ES0647+250 の R_C band light curve から計算した Structure Function を示 す。データ点が少ないためエラーが大きくなっている。今後観測点を増やせば、より優位

に b を決定できる可能性がある。index b は 1.02 である。

 \boxtimes 7.4: structure function of AO 0235+16 \boxtimes 7.5: structure function of 1ES 0647+250

7.1.5 S5 0716+71

図 7.6 に S5 0716+71 の R_C band light curve から計算した Structure Function を示す。 plateou になるところの timescale は約 15days である。また、plateou の Log(SF) は 0.3 になっており、特徴的な timescale である可能性は極めて高い。index b は 0.83 である。

7.1.6 PKS 0735+17

図 7.7 に PKS 0735+17 の R_C band light curve から計算した Structure Function を示 す。SF は t = 6day で折れ曲がっており、t = 10 day から再び power-low で上昇してい る。これは、2 つの特徴的な timescale が含まれている可能性がある。

7.1.7 Q 0827+243

図 7.8 に Q 0827+243 の R_C band light curve から計算した Structure Function を示 す。light curve から分かるように明るさの変動が小さいため、SF はばらつきが大きく power-low での fitting の信頼度は低い。

7.1.8OJ 287

図 7.9 に OJ 287 の R_C band light curve から計算した Structure Function を示す。t = 7day 付近に折れ曲がりがあるように見えるが、 $\log(SF)$ が 0.3 になる t ~ 80 day が timescale の可能性もある。index b は 0.81 である。

 \blacksquare 7.8: structure function of Q 0827+243

☑ 7.9: structure function of OJ 287

岡山データあり

7.1.9 QSOB 0917+449

図 7.10 に QSOB 0917+449 の I band light curve から計算した Structure Function を 示す。t = 18 day 付近で log(SF) が 0.3 に達し、かつ plateou になっている。また、index b は 0.77 である。

7.1.10 Mrk 421

図 7.11 に Mrk 421 の R_C band light curve から計算した Structure Function を示す。t = 12 days で SF が折れ曲がり、かつ plateou になっている。index b は 1.06 である。

☑ 7.10: structure function of QSOB0917+449☑ 7.11: structure function of Mrk 421

7.1.11 4C 49.22

図 7.12 に 4C 49.22 の R_C band light curve から計算した Structure Function を示す。 この天体は岡山 MITSuME でも観測されており、 light curve からわかるように明るさの 変動は小さく、ゆっくりしている。そのため、SF はばらつきが大きく、明らかな plateou と折れ曲がりの位置は見られない。

7.1.12 TON 599

図 7.13 に TON 599 の R_C band light curve から計算した Structure Function を示す。 この天体は岡山 MITSuME でも観測されている。t = 20 days 付近に折れ曲がりがある が、明かなな plateou は見られない。今後観測点を増やすことによって、より正確に SF を求められる可能性が高い。index b は 1.20 である。

 \blacksquare 7.12: structure function of 4C 49.22

 \square 7.13: structure function of TON 599

7.1.13 1ES 1218+304

図 7.14 に 1ES 1218+304 の R band light curve から計算した Structure Function を示 す。t = 19 days 付近に折れ曲がりがあり、log(SF) が 0.3 に達している。index b は 1.63 である。

7.1.14 ON 231

図 7.15 に ON 231 の R_C band light curve から計算した Structure Function を示す。観 測点が少ないためエラーが大きくなっている。またばらつきも大きい。今後観測点を増や すことでより正確に SF を求められる可能性がある。

 \boxtimes 7.14: structure function of 1ES1218+304

 \boxtimes 7.15: structure function of ON231

7.1.15 3C 279

図 7.16 に 3C 279 の R_C band light curve から計算した Structure Function を示す。 3C279 は長年観測されている天体であり、 R_C band での Structure Function も報告され ている。(Kartaltepe & Balonek 2007) MITSuME 望遠鏡による今研究では、観測点が十 分ではないため、SF はばらつきが大きく、明らかな折れ曲がりや plateou は見られない。

7.1.16 PKS 1510-08

図 7.17 に PKS 1510-08 の R_C band light curve から計算した Structure Function を示 す。この天体は岡山 MITSuME でも 2009 年 2 月から観測している。t = 26 day 付近で log(SF) が 0.3 に達し、plateou になっている。index b は 0.65 である。

7.1.17 3C 345

図 7.18 に 3C 345 の R_C band light curve から計算した Structure Function を示す。こ の天体は岡山 MITSuME でも観測している。SF は t = 19 days 付近で log(SF) = 0.3 に 達しているが、power low のスロープに対してばらつきが大きいことがわかる。index b は 0.73 である。

 \blacksquare 7.17: structure function of PKS1510-08

7.1.18 1ES 1959+650

図 7.19 に 1ES 1959+650 の R_C band light curve から計算した Structure Function を 示す。図から、t = 20 day で折れ曲がり、別の傾きの power-low になっていることがわ かる。このことから 2 つの timescale が存在している可能性が考えられる。t < 20 day で の index b は 1.47 である。

 \blacksquare 7.18: structure function of 3C 345

 \boxtimes 7.19: structure function of 1ES 1959+650

7.1.19 BL Lac

図 7.20 に BL Lac の R_C band light curve から計算した Structure Function を示す。t = 10 days 付近で 折れ曲がり plateou になっている。さらにその後 log(SF) は 0.3 に漸近 している。t < 10 days では明らかに power-low になっており、index b は 0.65 である。

7.1.20 3C 454.3

図 7.21 に 3C 454.3 の R_C band light curve から計算した Structure Function を示す。 t = 14 days で折れ曲がりがみられるが、その後は plateou にならずに減少している。

 \boxtimes 7.20: structure function of BL Lac

 \boxtimes 7.21: structure function of 3C454.3

7.2 可視光変動と blazar sequence の関係

表 7.2 に MITSuME 望遠鏡で観測した blazar の light curve から求めた flux の the fractional root mean square (rms) variability amplitude を示す。

Name	filter	F _{var}	average Luminosity	average Flux
1ES 0033+595	R_C	0.190 ± 0.061	$2.25e+44 \pm 6.70e+43$	$1.35e-11 \pm 4.01e-12$
GC 0109+224	R_C	0.209 ± 0.019	-	$1.95e-11 \pm 4.20e-12$
3C 66A	R_C	0.199 ± 0.012	$2.35e + 46 \pm 4.68e + 45$	$3.47e-11 \pm 6.93e-12$
AO 0235+16	R_C	0.773 ± 0.108	$2.92e+46 \pm 2.28e+46$	$6.85e-12 \pm 5.35e-12$
S5 0716 + 71	R_C	0.341 ± 0.025	$2.38e + 46 \pm 8.18e + 45$	$8.86e-11 \pm 3.04e-11$
PKS 0735 $+17$	R_C	0.164 ± 0.016	$3.88e + 45 \pm 6.53e + 44$	$6.36e-12 \pm 1.07e-12$
$1 ES \ 0806 + 524$	R_C	0.066 ± 0.012	$4.26e + 44 \pm 3.89e + 43$	$9.01e-12 \pm 8.23e-13$
Q 0827 $+243$	R_C	0.060 ± 0.014	$8.62e{+}45 \pm 6.65e{+}44$	$2.01e-12 \pm 1.55e-13$
OJ 287	R_C	0.269 ± 0.026	$8.49e + 45 \pm 2.31e + 45$	$2.99e-11 \pm 8.12e-12$
$1 ES \ 1011 + 496$	R_C	0.063 ± 0.011	$5.77e + 44 \pm 4.28e + 43$	$1.02e-11 \pm 7.56e-13$
$1 \text{ES} \ 1028 + 511$	R_C	0.052 ± 0.008	$1.19e+45 \pm 7.72e+43$	$2.87e-12 \pm 1.86e-13$
Mrk 421	R_C	0.226 ± 0.019	$1.60e+44 \pm 3.78e+43$	7.93e-11 \pm 1.87e-11
TON 599	R_C	0.774 ± 0.085	$1.15e+46 \pm 9.01e+45$	$5.05e-12 \pm 3.95e-12$
ON 325	R_C	0.136 ± 0.021	$7.84e + 44 \pm 1.23e + 44$	$1.87e-11 \pm 2.93e-12$
$1 \text{ES} \ 1218 + 304$	R_C	0.164 ± 0.013	$3.85e+44 \pm 6.72e+43$	$4.40e-12 \pm 7.68e-13$
ON 231	R_C	0.203 ± 0.032	$5.95e + 44 \pm 1.24e + 44$	$2.38e-11 \pm 4.97e-12$
PG 1222+216	R_C	0.045 ± 0.013	$4.56e + 45 \pm 2.99e + 44$	$7.14e-12 \pm 4.68e-13$
3C 273	R_C	0.046 ± 0.006	$8.40e + 45 \pm 4.29e + 44$	$1.30e-10 \pm 6.64e-12$
3C 279	R_C	0.389 ± 0.097	$5.32e + 45 \pm 2.12e + 45$	$4.93e-12 \pm 1.96e-12$
PG 1424+240	R_C	0.030 ± 0.007	-	$3.19e-11 \pm 1.71e-12$
PKS 1510-08	R_C	0.496 ± 0.049	$5.46e + 45 \pm 2.76e + 45$	$1.32e-11 \pm 6.66e-12$
3C 345	R_C	0.332 ± 0.046	$2.97e+45 \pm 1.00e+45$	$2.17e-12 \pm 7.30e-13$
$\mathrm{Mrk}~501$	R_C	0.064 ± 0.020	$5.13e + 43 \pm 7.74e + 42$	$2.13e-11 \pm 3.21e-12$

表 7.2: Optical variability of observed blazars

Name	filter	F_{var}	average Luminosity	average Flux
IZW 187	R_C	0.076 ± 0.011	$6.14e + 43 \pm 4.74e + 42$	$9.13e-12 \pm 7.05e-13$
OT 081	R_C	0.688 ± 0.186	$1.92e+45 \pm 1.36e+45$	$6.05e-12 \pm 4.29e-12$
$1 \text{ES} \ 1959 + 650$	R_C	0.157 ± 0.014	$1.68e + 44 \pm 2.72e + 43$	$3.58e-11 \pm 5.81e-12$
BL Lac	R_C	0.258 ± 0.024	$5.80e+44 \pm 1.51e+44$	$5.63e-11 \pm 1.47e-11$
3C 454.3	R_C	0.685 ± 0.076	$6.43e + 46 \pm 4.42e + 46$	$1.89e-11 \pm 1.30e-11$
1ES 2344+514	R_C	0.087 ± 0.012	$9.18e + 43 \pm 9.46e + 42$	$2.29e-11 \pm 2.36e-12$

表 7.3: 続き

7.2.1 Optical Variability against fluxes in the R_C band

図 7.22 に可視光 (R_C band) flux での variability amplitude と 平均 flux の分布図を示 す。(a) は blazar sequence に基づいてマーカーを変えており、赤丸は FSRQ, 水色四角は BL Lac, 緑三角は LBL, 青中抜き丸は HBL, 黒中抜き四角は分類クラスが不明の場合を それぞれ示している。

この図から、HBLの変動は比較的小さく (≤ 0.3)、さらに flux も小さい ($< 10^{45}$ [erg/s]) ことがわかる。一方、4 個の FSRQ (すべて HPQ) は大きな変動を持ち、flux も大きい (> 10^{45} [erg/s]) ことがわかる。しかし、FSRQ で唯一 LPQ である天体は変動が小さい。

(b) は polarization のクラス基づいてマーカーを変えており、赤丸は HPQ (High Polarized Quasar)、 水色四角は LPQ (Low Polarized Quasar)、黒三角が分類が不明な天体 をそれぞれ示している。

この図から、HPQ の変動は LPQ に比べて大きいことがわかる。しかし、flux にはこ れらの分類に明らかに違いはみられない。これは大きい変動は jet 成分が accretion disk からの熱的成分に対して優位になることを意味しているとすると、この場合 jet 成分であ る synchrotron emission が増えることで偏光度が大きくなると考えることができる。

7.2.2 Optical Variability against gamma-ray fluxes

ガンマ線 flux と可視光 (R_C band) の変動の分布図を図 7.23 に示す。ガンマ線 flux は Fermi 公開データの Bright Source List から取得した。 N_{γ} は 1 - 100 GeV での photon flux [photon/cm²/s] である。

(a) のマーカーと (b) のマーカーは図 7.22 と同じである。HBL の ガンマ線 flux は FSRQ

(b) polarization classification

☑ 7.22: The optical variability is plotted against optical monochromatic luminosity.

に比べて小さく、可視光 flux と同じ傾向がある。さらに、FSRQ で唯一可視光で変動が 小さい天体は、変動が大きい他の FSRQ に比べてガンマ線 flux が小さい。一般的に、可 視光で変動の激しい blazar は、変動の小さい blazar に比べて 可視光 flux が大きい傾向 があり、ガンマ線でも比較的明るい。

(b) polarization classification

 \boxtimes 7.23: The optical variability is plotted against gamma-ray fluxes corrected by cosmological distance.

第8章 Conclusion

本研究では、MITSuME望遠鏡によって2年にわたるブレーザーの可視光モニター観測 を行い、明るさの変動や変動の timescale、color index との関係、ガンマ線との相関につ いて調べた。このモニター観測は2007年に導入された自動スケジュール観測の機能検証 も目的としている。ブレーザーの可視光観測は長年行われてきたが、2008年に Fermi 衛 星が打ち上がったことで、初めてガンマ線と可視光の変動が1日の分解能で比較できるよ うになった。我々はブレーザーのパトロール観測を行うシステムを開発し、2008年1月か ら2年以上 g', R_C, I_C の可視光 3 band で同時観測を行ってきた。その結果、Q 0827+243, QSOB 0917+449, 4C 49.22, TON 599, 1ES 1218+304, PKS1510-08, 3C 345, 3C 66A, 3C 273, 4C 38.41, 3C 454.3 では可視光の spectral index から、可視光域では acretion disk などからの熱的成分が jet 成分と同等、もしくはそれ以上に卓越している可能性を提案 することができた。また、3C454.3のガンマ線と可視光に強い相関があることを発見し、 PKS 1502+106, 3C 279, AO 0235+16 にも相関があることがわかった。これらはいずれ も可視光域が synchrotron ピーク周波数よりも高エネルギーが側に位置しており、可視 光の spectral index が比較的急という特徴がある。3C 454.3 と AO 0235+16 は Discrete Correlation Function を計算することでガンマ線と可視光の間のラグについて調べた。そ の結果、3C 454.3 ではガンマ線と可視光の間に2 から8日のラグがある可能性がわかっ た。8日のラグは2009年12月の巨大 flare でのガンマ線と可視光のピーク位置のずれと 一致している。さらに、structure function 解析を用いて、可視光 light curve から変動の timescale を調べた。より詳細に調べるにはさらなる観測が必要なことがわかったが、DA 055, 3C 66A, S5 0716+71, BL Lac では良い制度で structure function の power-law index を求めることに成功した。今後はさらに観測を続けることで、ガンマ線との相関がとれる 観測点を増やしより詳しく関係性を調べることが期待できる。また、2009年にはX線観 測装置 MAXI が ISS に設置され、今後ガンマ線・X 線・可視光という多波長での変動を 調べることにも貢献できると考える。

関連図書

- [1] 案西 由希, 卒業論文 「MITSuME 望遠鏡パトロール観測システムの開発」 (2008)
- [2] 下川辺 隆史、修士論文「ガンマ線バースト残光望遠鏡の自動観測システムおよび解 析パイプラインの開発」東京工業大学 (2007)
- [3] 谷津 陽一、修士論文「ガンマ線バースト観測用 50cm 望遠鏡の性能評価と改良」東 京工業大学 (2004)
- [4] 石村 拓人、修士論文「MITSuME 望遠鏡の自動観測・解析システムの高度化と観測」
 東京工業大学 (2007)
- [5] 横尾 武夫 「新・宇宙を解く」 恒星社
- [6] GLAST 衛星 NASA の公式ホームページ http://glast.gsfc.nasa.gov/
- [7] The STScI Digitized Sky Survey http://archive.stsci.edu/cgi-bin/dss_form
- [8] U.S.Naval Observatory, USNO-B1.0 Catalog http://www.usno.navy.mil/
- [9] United States Naval Observatory Flagstaff Station http://www.nofs.navy.mil/
- [10] gnuplot 公式ホームページ http://www.gnuplot.info/
- [11] The Fermi Gamma-ray Space Telescope (Stanford Univ) http://www-glast.stanford.edu/
- [12] Fermi LAT Performance http://www-glast.slac.stanford.edu/software/IS/glast_lat_performance.http://www-glast.slac.stanford.edu/software/IS/glast_lat_performance.http://www.glast.slac.stanford.edu/software/IS/glast_lat_performance.http://www.glast.slac.stanford.edu/software/IS/glast_lat_performance.http://www.glast.slac.stanford.edu/software/IS/glast_lat_performance.http://www.glast.slac.stanford.edu/software/IS/glast_lat_performance.http://www.glast.slac.stanford.edu/software/IS/glast_lat_performance.http://www.glast.slac.stanford.edu/software/IS/glast_lat_performance.http://www.glast.slac.stanford.edu/software/IS/glast_lat_performance.http://www.glast.slac.stanford.edu/software/IS/glast_lat_performance.http://www.glast.slac.stanford.edu/software/IS/glast_lat_performance.http://www.glast.slac.stanford.edu/software/IS/glast_lat_performance.http://www.glast.slac.stanford.edu/software/IS/glast_lat_performance.http://www.glast.slac.stanford.edu/software/IS/glast_lat_performance.http://www.glast.slac.stanford.edu/software/IS/glast_lat_performance.http://www.glast.slac.stanford.edu/software/IS/glast_lat_performance.http://www.glast.slac.stanford.edu/software/IS/glast_lat_performance.http://www.glast.slac.stanford.edu/software/IS/glast_lat_performance.http://www.glast.slac.stanford.edu/software/IS/glast_lat_performance.http://www.glast.slac.stanford.edu/software/IS/glast_lat_performance.http://www.glast.slac.stanford.edu/software/IS/glast_lat_performance.http://www.glast.slac.stanford.edu/software/IS/glast_lat_performance.http://www.glast.slac.stanford.edu/software/IS/glast_lat_performance.http://www.glast.slac.stanford.edu/software/IS/glast_lat_performance.http://www.glast.slac.stanford.edu/software/IS/glast_lat_performance.http://www.glast.slac.stanford.edu/software/IS/glast_lat_performance.http://www.glast.slac.stanford.edu/software/IS/glast_lat_performance.http://www.glast.slac.stanford.edu/software/IS/glast_lat_performance.http://www.glast.slac.stanford.edu/software/IS/glast_lat_performance.http://www.glast.s
- [13] LAT Instrument Web Site at SLAC http://www-glast.slac.stanford.edu/
- [14] LAT Fact Sheet http://fermi.gsfc.nasa.gov/ssc/resources/library/info/Sci_Fact_Sheet.pdf
- [15] Abdo, A. A. et al 2009, ApJ, 699..817A
- [16] Abdo, A. A. et al 2009, ApJ, 700..597A

- [17] Abdo, A. A. et al 2009, ApJS, 183..46A
- [18] Bonning, E. W., Bailyn, C., Urry, C. M., Buxton, M., Fossati, G., Maraschi, L., Coppi, P., Scalzo, R., Isler, J. & Kaptur, A., 2009, ApJ, 697L.881B
- [19] Ciprini, S., Tosti, G., Raiteri, C. M., Villata, M., Ibrahimov, M. A., Nucciarelli, G. & Lanteri, L., 2003, A&A, 400..487C
- [20] Dermer, C. D., Schlickeiser, R., 1993, ApJ, 416..458D
- [21] Edelson, R. A. & Krolik, J. H., 1988, ApJ, 333..646E
- [22] Edelson, R. A., Pike, G. F. & Krolik, J. H., 1990, ApJ, 359..86E
- [23] Espaillat, C. et al., 2008, ApJ, 679..182E
- [24] Fan, J. H. et al., 2005, ChJAA, 5..457F
- [25] Fan, J. H. et al., 2002, A&A, 381....1F
- [26] Fan, J. H. et al., 2007, ASPC, 373..193F
- [27] Fan, J. H. et al., 2008, PASJ, 60.1217F
- [28] Fiorucci, M. & Tosti, G., 1996, A&AS 116..403F
- [29] Fiorucci, M., Tosti, G., Rizzi, N., 1998, PASP 110..105F
- [30] Fossati, G., Maraschi, L., Celotti, A., Comastri, A. & Ghisellini, G., 1998, MNRAS, 299..433F
- [31] Fukugita, M., Shimasaku, K. & Ichikawa, T., 1995, PASP, 107..945F
- [32] Fukugita, M., Ichikawa, T., Gunn, J. E., Doi, M., Shimasaku, K. & Schneider, D. P., 1996, AJ, 111.1748F
- [33] Ghisellini, G., Tavecchio, F. & Ghirlanda, G., 2009, MNRAS, 399..2041G
- [34] Ghisellini, G., Foschini, L., Tavecchio, F. & Pian, E., 2007, MNRAS, 382L..82G
- [35] Ghisellini, G., Celotti, A., Fossati, G., Maraschi, L. & Comastri, A., 1998, MNRAS, 301..451G

- [36] Ghisellini, G. et al., 1997, A&A, 327...61G
- [37] Gonzalez-Perez, J. N., Kidger, M. R., Martin-Luis, F., 2001, AJ, 122.2055G
- [38] Hufnagel, B. R., & Bergman, J. N, 1992, ApJ, 386..473H
- [39] Hughes, P. A., Aller, H. D. & Aller, M. F., 1992, ApJ, 396.469H
- [40] Kartaltepe, J. S. & Balonek, T. J., 2007, AJ, 133.2866K
- [41] Kawaguchi et al., 1998, ApJ, 504..671K
- [42] Lainela et al., 1999, ApJ, 521..561L
- [43] Lehto, H. J. & Valtonen, M. J., 1996, ApJ, 460..207L
- [44] Marscher, A. P., 1996, ASPC, 110..248M
- [45] Maccagni, D. et al., 1987, A&A, 178..21M
- [46] Nilsson, K., Pasanen, M., Takalo, L. O., Lindfors, E., Berdyugin, A., Ciprini, S. & Pforr, J., 2007, A&A, 475..199N
- [47] Osone, S. & Teshima, M. 2001, CRC, 7.2695O
- [48] Paltani, S. 1999, ASPC, 159..293P
- [49] Press, W. H., Rybicki, G. B. & Hewitt, J. N., 1992 ApJ, 385..416P
- [50] Raiteri, C. M., Villata, M., Capetti, A., Heidt, J., Arnaboldi, M. & Magazz, A., 2007, A&A, 464..871R
- [51] Raiteri, C. M., Villata, M., Lanteri, L., Cavallone, M. & Sobrito, G., 1998, A&AS, 130..495R
- [52] Raiteri, C. M. et al., 2007, A&A, 473..819R
- [53] Rani, B., Wiita, P. J. & Gupta, A. C., 2009, ApJ, 696.2170R
- [54] Rodriguez-Pascual, P. M., Mas-Hesse, J. M., Santos-Lleo, M., 1997, A&A, 327..72R
- [55] Rutman, J., 1978, IEEEP, 66.1048R

- [56] Sikora, M., Begelman, M. C., Rees, M. J., 1994, ApJ, 421..153S
- [57] Sillanpaa, A. et al, 1988, ApJ, 325..628S
- [58] Simonetti, J. H., Cordes, J. M. & Heeschen, D. S., 1985, ApJ, 296...46S
- [59] Smith, P. S., Jannuzi, B. T., Elston, R., 1991, ApJS, 77, 67
- [60] Schramm, K. J. et al., 1994, A&AS, 106..349S
- [61] Collier, S. & Peterson, B. M., 2001, ApJ, 555..775C
- [62] Tavecchio, F. et al., 2002,
- [63] Takalo, L. O. et al., 1992, AJ, 104...40T
- [64] Takalo, L. O. et al., 1996, A&AS, 120..313T
- [65] Vaughan, S.; Edelson, R.; Warwick, R. S.; Uttley, P., 2003, MNRAS, 345.1271V
- [66] Villata, M., Raiteri, C. M., Lanteri, L., Sobrito, G. & Cavallone, M. , 1998, A&AS, 130..305V
- [67] Wagner, S. J. & Witzel, A., 1995, ARA&A, 33..163W
- [68] Worrall, D. M et al., 1984, ApJ, 286..711W
- [69] Xie, G. Z. et al., 1994, A&AS, 106..361X

付録A Light curves

MITSuME 望遠鏡のパトロール観測システムで観測したが、観測数が十分ではないため、本文中で紹介しなかった各天体の可視光 light curve を以下に示す。

 \blacksquare A.1: light curves of 1ES 0033+595

 \blacksquare A.4: light curves of J 0805+6144

 \square A.5: light curves of 1ES 0806+524

 \square A.7: light curves of 1ES 1011+496

A . 1643

5 25m 4

20.000

54900

160

54800

[erg/cm²/s]

[erg/cm²/s]

[erg/cm²/s]

0 2 (c) - 1.8 0 - 1.6 0 - 1.6 0 - 1.4 1.2

40 20

0

40

20

0

40

20

g

Rc

lc

g' - lc

54700

Flux_{ic} * 10⁻¹³ Flux_{Rc} * 10⁻¹³ Flux_g.* 10⁻¹³

 \blacksquare A.8: light curves of 1ES 1028+511

 \blacksquare A.9: light curves of Mrk 180

55000

MJD

55100

 \blacksquare A.10: light curves of ON 325

 \blacksquare A.11: light curves of PG 1222+216

 \blacksquare A.13: light curves of PG 1553+113

 \blacksquare A.14: light curves of 3C 336

 \boxtimes A.15: light curves of OT 081

 \blacksquare A.16: light curves of 3C 371

 \blacksquare A.17: light curves of CTA 102

付録B Reference Stars

blazar の測光では、参照星との相対測光によって flux を求めた。ここでは、観測した各 blazar で相対測光に使用した参照星、および参照星の等級を示す。多くの有名な blazar は参 照星としていくつかの天体の等級が報告されている。表 B.1 は MITSuME 望遠鏡で観測し た blazar に対して参照星の等級が報告されている論文である。ここで、AAVSO とは American Association of Variable Star Observers (http://www.aavso.org/) という変動天体の観 測グループで、変動星の情報発信とデータ提供を目的とした団体である。この AAVSO は変 動星の参照星の情報を提供しており、http://www.aavso.org/observing/charts/vsp/index.html (図 B.1) から天体名や座標で検索することができる。

図 B.1: AAVSO の変動星検索ページ http://www.aavso.org/observing/charts/vsp/index.html

reference paper が無い天体については GSC2 (version 2.3.2) カタログを使用した。こ のカタログは国立天文台のデータアーカイブ (http://dbc.nao.ac.jp/lcat/cftp.html) で提 供されている。GSC2 は Parlomar and UK Schmidt telescope (DSS) による 2 期間・3 bandpass の photographic Sky Survey プレートの 1"精度スキャンに基づいた全天カタ ログである。各プレートの全ての天体に対して位置・等級・分類は再計算されており、天 体は COMPASS database にロードされ、同一天体の複数の観測が合わせられ、ユニーク な名前が割り当てられている。

以下に MITSuME 望遠鏡の解析で使用した、各天体の参照星を示す。ここで、表項目 名の A, G, R, V, F, FT, N はそれぞれ、AAVSO, Gonzalez-Perez et al, Raiteri et al, Villata et al, Fiorucci et al, Fiorucci & Toshi, Nilsson et al を表しており、項目の数字は 各 reference paper で割り当てられた参照星の番号である。

Name	RA	Dec	reference
1ES0033 + 595	00:35:52.64	+59:50:04.6	AAVSO
GC0109+224	01:12:05.82	+22:44:38.8	AAVSO
			Miller et al
			Ciprini et al
DA055	01:36:58.59	+47:51:29.1	
3C66A	02:22:39.60	+43:02:08.0	Gonzalez-Perez et al
			Fiorucci & Toshi
			AAVSO
AO0235+16	02:38:38.93	+16:36:59.3	Gonzalez-Perez et al
			Fiorucci et al
1ES0647 + 250	06:50:46.52	+25:03:00.0	
S50716+71	07:21:53.45	+71:20:36.4	Gonzalez-Perez et al
			Villata et al
PKS0735+17	07:38:07.39	+17:42:19.0	AAVSO
OI287 (0752+258)	07:55:37.03	+25:42:39.0	
J0805+6144 (0800+6152)	08:05:18.18	+61:44:23.7	
1ES0806 + 524	08:09:49.15	+52:18:58.7	Fiorucci et al $+$ SDSS
			AAVSO
Q0827+243 (OJ248)	08:30:52.09	+24:10:59.8	Raiteri et al
S50836+71 (4C71.07)	08:41:24.37	+70:53:42.2	
OJ287	08:54:48.87	+20:06:30.6	Gonzalez-Perez et al
			Fiorucci & Toshi
			AAVSO
QSOB0917+449	09:20:58.46	+44:41:54.0	
1ES1011 + 496	10:15:04.14	+49:26:00.7	Nilsson et al (R only)
1ES1028+511	10:31:18.51	+50:53:35.9	Villata et al
Mrk421	11:04:27.30	+38:12:31.8	Villata et al
			Gonzalez-Perez et al
			AAVSO

表 B.1: papers for reference stars of blazars

表 B.2: 続き

	1		
Name	RA	Dec	reference
Mrk180	11:36:26.40	+70:09:27.3	Villata et al
4C49.22	11:53:24.47	+49:31:09.0	AAVSO
TON599 (4C29.45)	11:59:31.80	+29:14:43.8	AAVSO
			Raiteri et al
ON325	12:17:52.08	+30:07:00.6	Fiorucci & Toshi $+$ SDSS
1ES1218 + 304	12:21:21.94	+30:10:37.1	Smith et al
ON231	12:21:31.7	+28:13:58.5	AAVSO
			Fiorucci & Toshi
PG1222+216 (4C21.35)	12:24:54.4	+21:22:47.0	Raiteri et al
3C273	12:29:06.70	+02:03:08.6	Gonzalez-Perez et al
			AAVSO
			Fiorucci
3C279	12:56:11.17	-05:47:21.5	Gonzalez-Perez et al
			Raiteri et al
			AAVSO
PG1424+240	14:27:00.39	+23:48:00.0	Fiorucci & Toshi
PKS1502+106	15:04:24.98	+10:29:39.2	
PKS1510-089	15:12:50.53	-09:05:59.8	Gonzalez-Perez et al
			Raiteri et al
PG1553+113	15:55:43.04	+11:11:24.4	
3C336	16:24:39.08	+23:45:13.0	
4C38.41	16:35:15.49	+38:08:04.5	
3C345	16:42:58.81	+39:48:37.0	Gonzalez-Perez et al
Mrk501	16:53:52.20	+39:45:36.6	Gonzalez-Perez et al
			Fiorucci & Toshi
			Villata et al
			AAVSO
IZW187	17:28:18.60	+50:13:10.0	Fiorucci & Toshi
OT081	17:51:32.82	+09:39:00.7	Fiorucci et al
	_,	,	$AAVSO(V \mathcal{O}\mathcal{A})$

Name	RA	Dec	reference
3C371(1806+698)	18:06:50.70	+69:49:28.1	AAVSO (Rなし)
3C382	18:35:03.4	+32:41:47	
1ES1959 + 650	19:59:59.85	+65:08:54.7	Villata et al (B ab)
BLLAC	22:02:43.30	+42:16:40.0	Gonzalez-Perez et al
			Fiorucci & Toshi
			AAVSO
CTA102	22:32:36.41	+11:43:50.9	Raiteri et al
3C454.3	22:53:57.75	+16:08:53.6	Raiteri et al
			Gonzalez-Perez et al
			AAVSO
			Fiorucci
1ES2344 + 514	23:47:04.84	+51:42:17.9	Fiorucci et al
			AAVSO

表 B.3: 続き

		影	B.4: Reference	• Stars of 1ES 00	33+595, GC 010	9+224, 3C 66A			
Source	Star	RA[hms]	Dec[dms]	magnitude				ref	
				В	Λ	m Rc	\mathbf{Ic}	A	IJ
1ES 0033+595	-	00:35:43.38	+59:48:49.2	$15.243\ (0.017)$	$14.390\ (0.007)$	$13.892\ (0.012)$	$13.425\ (0.008)$	144	
	2	00:36:15.85	+59:53:06.0	$15.311\ (0.028)$	$14.447\ (0.013)$	$13.916\ (0.019)$	$13.385\ (0.015)$	144	
	3	00:35:25.92	+59:53:11.8	$15.236\ (0.023)$	$14.408\ (0.013)$	$13.871 \ (0.025)$	$13.342\ (0.019)$	144	
	4	00:36:15.20	+59:47:15.2	$15.333\ (0.033)$	$14.491\ (0.016)$	$13.979\ (0.025)$	$13.483\ (0.015)$	145	
	IJ	00:36:42.78	+59:51:26.5	$15.407\ (0.020)$	$14.526\ (0.012)$	$13.989\ (0.018)$	$13.404\ (0.010)$	145	
GC 0109+224	-	$01{:}11{:}53.68$	+22:43:15.5	$15.19\ (0.06)$	$14.45\ (0.05)$	$14.09\ (0.05)$	I	D	
	2	$01{:}12{:}00{.}51$	+22:45:17.6	$16.30\ (0.10)$	15.28(0.07)	$14.72\ (0.06)$	$14.22\ (0.08)$	C1	
	3	$01{:}12{:}03{.}28$	+22:43:27.3	$13.25\ (0.06)$	$12.51\ (0.05)$	$12.11 \ (0.04)$	$11.76\ (0.04)$	Ι	
	4	$01{:}12{:}10.26$	+22:44:37.7	$16.01 \ (0.08)$	$15.29\ (0.07)$	$14.94\ (0.05)$	14.60(0.07)	되	
3C $66A$	-	02:22:46.12	+43:00:17.8	$14.984\ (0.008)$	$13.810\ (0.003)$	$13.176\ (0.005)$	$12.588\ (0.005)$		က
	2	$02{:}23{:}01{.}04$	+43:03:24.6	$15.136\ (0.023)$	$14.065\ (0.019)$	$13.344\ (0.025)$	$12.834\ (0.006)$		15
	က	$02{:}22{:}45{.}13$	+43:04:19.6	$15.786\ (0.006)$	$14.780\ (0.004)$	$14.233\ (0.006)$	$13.717\ (0.005)$	148	21
	4	$02{:}22{:}44{.}00$	+43:05:29.1	$14.119\ (0.002)$	$13.630\ (0.002)$	$13.333\ (0.007)$	$13.048\ (0.003)$	136	23
	ю	02:22:47.23	+43:06:00.1	$15.088 \ (0.002)$	$14.332\ (0.002)$	$13.907 \ (0.005)$	$13.501 \ (0.004)$		24

		表 I	3.5: Reference	Stars of AO 023.	5+16, S5 0716+7	71, PKS 0735+17	2		
Source	Star	RA[hms]	$\mathrm{Dec}[\mathrm{dms}]$	magnitude				ref	
				В	Λ	m Rc	Ic	A	IJ
AO 0235+16		02:38:53.58	+16:35:27.7		$16.209\ (0.091)$	$15.506 \ (0.024)$	$15.170\ (0.022)$, _ 1	
	2	02:38:54.48	+16:36:03.1	$16.487\ (0.032)$	$15.978\ (0.014)$	$15.589\ (0.008)$	$15.208\ (0.023)$	က	
	co	02:38:36.64	+16:36:27.3	$13.599\ (0.002)$	$13.037\ (0.002)$	$12.678 \ (0.029)$	$12.373\ (0.001)$	4	
	4	02:38:39.85	+16:37:20.1	$16.181\ (0.009)$	$15.025\ (0.014)$	$14.203\ (0.006)$	$13.731 \ (0.010)$	∞	
	5	02:38:45.90	+16:37:35.9	$15.733\ (0.020)$	$14.781 \ (0.022)$	$14.190\ (0.022)$	$13.717\ (0.007)$	6	
	6	02:38:38.47	+16:38:16.8	$18.089\ (0.044)$	$16.785\ (0.025)$	$15.743 \ (0.024)$		10	
	2	02:38:45.56	+16:38:47.0	$14.643\ (0.003)$	$13.973\ (0.002)$	$13.589\ (0.013)$	$13.219\ (0.011)$	11	
S5 0716+71	-	07:21:13.99	+71:17:09.6	$14.616\ (0.010)$	$13.944\ (0.011)$	$13.472\ (0.007)$	$13.306\ (0.038)$		4
	co	$07{:}21{:}54{.}40$	+71:19:21.3	$14.152\ (0.001)$	$13.552\ (0.004)$	$13.189\ (0.010)$	$12.855\ (0.002)$	11	Ŋ
	4	07:22:12.62	+71:21:15.1	$14.246\ (0.002)$	$13.641 \ (0.003)$	$13.300\ (0.003)$	$12.972\ (0.001)$	18	0
	5	$07{:}22{:}18.00$	+71:23:34.4	$13.684\ (0.001)$	$13.221\ (0.001)$	$12.941 \ (0.001)$	$12.656\ (0.001)$	12	4
PKS 0735+17	-	07:38:01.40	+17:40:12.9	$15.355\ (0.039)$	$14.822\ (0.014)$	$14.519\ (0.036)$	$14.232\ (0.040)$	148	
	2	07:38:07.66	+17:36:20.1	$16.029\ (0.015)$	$15.361\ (0.000)$	$14.998\ (0.034)$	$14.657\ (0.039)$	154	
	e S	07:38:08.37	+17:44:59.7	$16.554 \ (0.012)$	$15.850\ (0.011)$	$15.466\ (0.037)$	15.106(0.042)	158	

		表 B.6:	Reference Star	s of 1ES 0806+5	24, Q 0827+243	(OJ 248), OJ 25	37			
Source	Star	RA[hms]	Dec[dms]	magnitude				ref		
				В	Λ	Rc	Ic	A	GR	ا ہے
1ES 0806+524	5	08:10:03.30	+52:18:56.2	14.95(0.00)	14.220(0.04)	13.860(0.04)	C2	146		
	c,	08:10:14.02	+52:20:34.1	$15.01 \ (0.00)$	$14.390\ (0.05)$	14.040(0.05)	C3	148		
	4	08:09:44.35	+52:18:09.0	16.00(0.00)	$15.140\ (0.06)$	$14.810\ (0.06)$	C4	155		
	5	08:10:10.94	+52:21:06.5	$15.85\ (0.00)$	$15.320\ (0.05)$	$14.990\ (0.06)$	C5	156		
Q $0827 + 243$	Н	08:30:57.81	+24:09:06.58	I	$14.16\ (0.04)$	$13.76\ (0.02)$	ı		1	
	2	08:30:50.17	+24:10:24.98	I	$14.71 \ (0.02)$	$14.46\ (0.03)$	I		2	
	3	08:30:57.08	+24:08:47.22	I	$14.76\ (0.04)$	$14.32\ (0.02)$	I		33	
	4	08:30:46.47	+24:12:46.48	I	$15.59\ (0.02)$	$15.18\;(0.03)$	I		4	
	5	08:30:53.58	+24:10:39.04	I	$15.76\ (0.03)$	$15.40\ (0.02)$	I		5	_
OJ 287	Ц	08:54:59.00	+20:02:57.9	$14.610\ (0.003)$	$13.986\ (0.003)$	$13.636\ (0.004)$	$13.293\ (0.006)$		1	
	7	08:54:53.37	+20:04:45.7	$15.051 \ (0.003)$	$14.192\ (0.003)$	$13.707\ (0.002)$	$13.262\ (0.004)$	142	6	
	3	08:54:55.27	+20:05:43.5	$15.519\ (0.004)$	$14.974\ (0.003)$	$14.632\ (0.003)$	$14.304\ (0.004)$	149	12	
	4	08:54:54.46	+20:06:13.8	$15.141 \ (0.003)$	$14.627\ (0.003)$	$14.315\ (0.003)$	$13.999\ (0.004)$	146	13	

	表 B.	7: Reference S	tars of $1ES 101$	1+496, 1ES 1028	3+511, Mrk 421,	Mrk180, TON 5:	99 (4C29.45)			
Source	Star	RA[hms]	Dec[dms]	magnitude				ref		
				В	V	m Rc	Ic	N	Α	2
1ES 1011 + 496	1	10:15:20.37	+49:26:42.4	I	$13.87\ (0.04)$	$13.40\ (0.03)$	I	A		
	2	10:15:08.89	+49:27:15.5	I	$15.88\ (0.05)$	$15.44\ (0.03)$	I	В		
	က	10:14:50.75	+49:27:20.0	I	$15.73\ (0.05)$	$15.42\ (0.03)$	I	C		
	4	10:14:53.89	+49:25:31.4	I	$14.32\ (0.04)$	$14.01 \ (0.03)$	I	D		
	5	10:15:08.03	+49:25:42.3	1	$14.43\ (0.04)$	$14.39\ (0.03)$	1	E		
1ES 1028+511	1	10:31:22.97	+50:52:34.6	$13.91\ (0.03)$	$13.20\ (0.02)$	12.93(0.03)		1		
	2	10:30:53.10	+50:54:53.0	$14.93\ (0.03)$	$14.29\ (0.03)$	$14.04\ (0.03)$		2		
	3	10:30:59.81	+50:52:53.1	$15.02\ (0.02)$	$14.40\ (0.03)$	$14.18\ (0.03)$		33		
	4	10:30:55.57	+50:51:22.7	$15.05\ (0.05)$	$14.40\ (0.03)$	$14.17\ (0.03)$		4		
	Ŋ	10:31:06.16	+50:52:57.5	$15.75\ (0.04)$	$15.03\ (0.03)$	$14.75\ (0.03)$		ъ		
	9	10:31:22.59	+50:50:17.5	$15.66\ (0.03)$	$15.06\ (0.03)$	$14.87\ (0.04)$		9		
Mrk 421	1	11:04:51.123	+38:17:10.41	$15.02\ (0.03)$	$14.36\ (0.02)$	$14.04\ (0.02)$	$13.679\ (0.007)$	1	144	
	2	11:04:18.193	+38:16:30.66	16.20(0.04)	$15.57\ (0.05)$	15.20(0.03)	$14.852\ (0.017)$	2	156	
Mrk180	1	11:36:40.50	+70:10:16.9	$14.49\ (0.02)$	13.98(0.02)	$13.73\ (0.02)$		1		
	2	11:36:06.64	+70:13:53.2	15.36(0.03)	14.80(0.02)	14.41(0.02)		2		
TON 599	1	11:59:45.09	+29:11:33.7	$13.994\ (0.006)$	$13.374\ (0.000)$	$12.994\ (0.003)$	$12.639\ (0.010)$		134	Н
	5	11:59:38.03	+29:22:11.5	$13.356\ (0.015)$	$12.380\ (0.008)$	$11.798\ (0.015)$	$11.238\ (0.017)$		124	
	3 S	12:00:07.28	+29:10:35.3	$13.716\ (0.016)$	$13.107\ (0.013)$	$12.756\ (0.014)$	$12.440\ (0.020)$		131	
	4	11:59:03.86	+29:17:47.9	$15.351\ (0.015)$	$14.027\ (0.009)$	$13.201\ (0.013)$	12.475(0.014)		140	

表 B.8:	Referen	ice Stars of O	N 325, 1ES 121	8+304, ON 231,	PG1222+216 (4	C21.35), 3C 273	, 3C 279, PG 14	24 + 240		
Source	Star	RA[hms]	Dec[dms]	magnitude				ref		
				В	Λ	Rc	Ic	FT R	IJ	А
ON 325		12:17:44.42	+30:09:43.5	$15.23\ (0.00)$	$14.96\ (0.04)$	$14.59\ (0.04)$	$14.21 \ (0.04)$	В		
	2	12:17:49.13	+30:07:01.8	$16.99\ (0.00)$	$16.50\ (0.14)$	$16.21 \ (0.11)$	$15.92\ (0.15)$	C1		
1ES 1218+304	1	12:21:11.37	+30:14:55.6	$14.65\ (0.01)$	$14.01 \ (0.01)$	$13.61 \ (0.01)$	$13.22\ (0.02)$	В		
ON 231	7	12:21:33.70	+28:13:03.68	I	12.08(0.04)	$11.72\ (0.04)$	11.40(0.04)	А		
	2	12:21:28.67	+28:16:37.10	ı	$14.81 \ (0.04)$	$13.86\ (0.04)$	12.68(0.04)	D		
	3	12:21:26.7	+28:12:30	ı	16.60(0.12)	$16.03\ (0.10)$	$15.50\ (0.11)$	C1		
PG 1222+216	7	12:24:56.05	+21:25:56.4	$14.99\ (0.03)$	$14.19\ (0.04)$	$13.84\ (0.03)$		1		
	2	12:24:44.10	+21:19:17.3	$15.45\ (0.04)$	$14.86\ (0.03)$	$14.56\ (0.03)$		2		
	3	12:24:41.19	$+21{:}21{:}29{.}5$		$15.66\ (0.04)$	$15.26\ (0.04)$		3		
3C 273	7	12:29:08.44	+02:00:20.1	$13.361\ (0.005)$	$12.718\ (0.012)$	$12.283\ (0.005)$	$11.894\ (0.011)$		2	127
	2	12:29:03.28	+02:03:18.6	$14.125\ (0.002)$	$13.570\ (0.019)$	$13.180\ (0.007)$	$12.846\ (0.008)$		9	135
	3	12:28:50.94	+02:06:30.9	$13.164\ (0.011)$	$12.711\ (0.018)$	$12.309\ (0.002)$	$12.042\ (0.003)$		11	126
3C 279	1	12.56.10.33	-05:50:13.8	$12.993 \ (0.004)$	$12.395\ (0.003)$	$12.030\ (0.006)$	$11.685\ (0.006)$		2	124
	2	12:56:14.50	-05:46:47.4	$16.806\ (0.010)$	$15.951 \ (0.005)$	$15.442 \ (0.002)$	$14.970\ (0.002)$		6	
	3	12:56:26.59	-05:45:22.4	$15.535\ (0.009)$	$14.941\ (0.001)$	$14.559\ (0.002)$	$14.215\ (0.003)$		10	149
PG 1424+240	4	14:26:53.5	+23:49:08	ı	$13.59\ (0.04)$	$13.20\ (0.04)$	12.80(0.04)	C1		
	2	14:27:05.8	+23:50:11	I	$13.70\ (0.05)$	$13.32\ (0.05)$	$12.91 \ (0.04)$	C2		
	3	14:26:57.07	+23:48:01.2	I	$15.91 \ (0.09)$	$15.57\ (0.08)$	$15.21 \ (0.08)$	C3		

		יוד	表 B.9: Referenc	e Stars of PKS	1510-089, 3C 345	, IZW 187					
Source	Star	$\mathrm{RA}[\mathrm{hms}]$	$\mathrm{Dec}[\mathrm{dms}]$	magnitude				ref			
				В	Λ	m Rc	\mathbf{Ic}	IJ	Я	A FT	r.
PKS 1510-089	1	15:12:52.90	-09:06:58.6	$16.201 \ (0.007)$	$15.237\ (0.004)$	$14.630\ (0.005)$	$14.100\ (0.007)$	Ļ	9		
	2	15:13:01.49	-09:06:40.0	$15.516\ (0.008)$	$14.803\ (0.003)$	$14.381\ (0.002)$	$13.999\ (0.004)$	ŝ	Ŋ		
	ŝ	15:12:41.16	-09:06:33.5	$16.656\ (0.052)$	$15.483 \ (0.009)$	$14.651\ (0.001)$	$13.889\ (0.004)$	4	က		
	4	15:12:51.66	-09:05:22.8	$15.302\ (0.005)$	$14.658\ (0.003)$	$14.254\ (0.004)$	$13.891\ (0.010)$	6	4		
	IJ	15:12:58.71	-09:04:43.3	$16.144\ (0.008)$	$15.440\ (0.004)$	$15.007\ (0.005)$	$14.613\ (0.009)$	10			
	9	15:13:04.80	-09:07:54.3	$15.901 \ (0.008)$	$15.277\ (0.004)$	$14.900\ (0.006)$	$14.504\ (0.003)$	14			
3C 345	Ч	16:42:54.82	+39.50:00.7	$16.044\ (0.017)$	$15.245\ (0.007)$	$14.768\ (0.006)$	$14.337\ (0.011)$	4			
	2	16:42:49.26	+39:46:38.5	$16.046\ (0.008)$	$15.418\ (0.007)$	$15.040\ (0.009)$	$14.669\ (0.019)$	12			
	c:	16:43:09.69	+39:48:29.8	$16.341 \ (0.037)$	$15.701 \ (0.006)$	$15.297\ (0.008)$	$14.912\ (0.011)$	17			
	4	16:42:52.89	+39:48:33.3	$16.452\ (0.016)$	$15.228\ (0.006)$	$14.470\ (0.006)$	$13.806\ (0.014)$	19			
Mrk 501	1	16:53:45.825	+39:44:09.08	$13.55\ (0.03)$	$12.61 \ (0.02)$	$12.11 \ (0.02)$	1			1	
	2	16:53:28.508	+39:46:58.96	14.10(0.03)	$13.23\ (0.02)$	$12.79\ (0.02)$	I			2	
IZW 187	Н	17:28:22.6	50:14:36	1	$13.14\ (0.06)$	$12.81 \ (0.06)$	$12.49\ (0.06)$			В	
	2	17:28:15.7	50:12:44	I	$15.29\ (0.06)$	$14.99\ (0.06)$	$14.66\ (0.06)$			Η	
	c;	17:28:16.3	50.13.55	ı	16.10(0.09)	$15.71 \ (0.08)$	$15.35\ (0.08)$			Γ	

	表 B.	10: Reference :	Stars of OT 081	1, 3C 371, 1ES 1:	959+650, CTA 1	02, 3C 454.3, 1E	S 2344+514				
Source	Star	RA[hms]	Dec[dms]	magnitude				ref			
				В	Λ	Rc	Ic	Α	$\mathbf{>}$	R G	
OT 081	-	17:51:35.89	+09:37:15.4	1	14.17(0.04)	$13.75 \ (0.04)$	13.38(0.04)		5		
	2	17:51:31.10	+09:39:41.4	ı	$14.36\ (0.04)$	$13.94\ (0.04)$	$13.55\ (0.04)$		4		
	3	17:51:30.15	+09:38:35.8	I	$14.89\ (0.04)$	$14.45\ (0.04)$	$14.02\ (0.04)$		5		
1ES 1959+650		20:00:26.505	+65:09:24.69	-	$12.67\ (0.04)$	$12.29\ (0.02)$,		
	2	19.59.39.309	+65:08:50.31	ı	$12.86\ (0.02)$	$12.53\ (0.02)$			7		
	3	19:59:34.410	+65:06:17.80	ı	$13.18\ (0.02)$	$12.27\ (0.02)$			က		
	4	19:59:57.329	+65:09:40.53	ı	$14.53\ (0.03)$	$14.08\ (0.03)$			4		
	9	20:00:00.544	+65:07:46.43	I	$15.20\ (0.03)$	$14.78\ (0.03)$			9		
	2	20:00:09.632	+65:07:58.29	I	$15.24\ (0.03)$	$14.79\ (0.03)$			2		
CTA 102	, _ 1	22:32:22.19	+11:42:23.0	$14.77 \ (0.04)$	$13.98\ (0.03)$	$13.56\ (0.04)$	I			H	
	2	22:32:23.99	+11:44:22.8	$16.17\ (0.04)$	$14.88\ (0.03)$	$14.07\ (0.07)$	I			\sim	
3C 454.3		22:53:53.58	+16:05:14.1	15.015(0.073)	$13.798\ (0.004)$	$13.196\ (0.005)$	$12.633\ (0.005)$			2	
	2	22:53:51.02	+16:05:55.0	$15.292\ (0.025)$	$14.402\ (0.012)$	$13.951 \ (0.003)$	$13.528\ (0.004)$			33	
	3	22:53:48.37	+16:06:16.3	$16.179\ (0.052)$	$15.216\ (0.008)$	$14.815\ (0.010)$	$14.424\ (0.017)$			ю	
	4	22:53:58.11	+16:09:07.0	$14.637\ (0.012)$	$13.587\ (0.004)$	$13.035\ (0.014)$	$12.545\ (0.006)$			13	~
1ES 2344+514	, _	23:47:19.47	+51:39:34.5	$14.010\ (0.032)$	$13.355\ (0.031)$	$12.967\ (0.000)$	$12.562\ (0.000)$	134			
	2	23:47:11.04	+51:40:27.1	$14.389\ (0.017)$	$13.717\ (0.017)$	$13.325\ (0.000)$	$12.932\ (0.000)$	137			
	3	23:47:21.54	+51:40:34.7	$14.837\ (0.014)$	$13.972\ (0.012)$	$13.473\ (0.000)$	$12.990\ (0.000)$	140			

付 録C 自動解析システムの構成

自動解析を行うためのスクリプトについて紹介する。

- \bullet daily start.sh
- dailyanalysis.sh
- daily.sh
- auto_lc.py
- draw_lc.py
- ・crontab で毎日 14 時 10 分に解析が開始されるよう設定している

```
$ crontab -1
10 14 * * * /home/pat/analyzepyraf/dailystart.sh
```

・ dailystart.sh は自動解析を demon 化するためのシェルスクリプトである

```
#! /bin/sh
DAILY_HOME=''/home/pat/analyzepyraf''
DAILY_SH=''$DAILY_HOME/dailyanalysis.sh''
DAILY_LOG=''$DAILY_HOME/log.log''
cd $DAILY_HOME
echo ''$DAILY_SH'' > $DAILY_LOG
$DAILY_SH start
```

・dailyanalysis.sh は .pid ファイルでプロセスの状態を監視するためのシェルスクリプ

トである

```
#/bin/sh
# Source function library.
. /etc/rc.d/init.d/functions
DAILY_HOME=''/home/pat/analyzepyraf''
PROG_DAILY=''daily.sh''
#PROG_DAILY=''auto_lc.py''
DAILY=''$DAILY_HOME/$PROG_DAILY''
DAILY_LOCKFILE=''$DAILY_HOME/.dailyanalysis.pid''
DAILY_LOG=''$DAILY_HOME/log.log''
[ ! -f $DAILY ] && echo ''$PROG_DAILY is not found'' && exit 1
export PATH=/usr/local/bin:$PATH
export PATH=/usr/local/mitsume/bin:$PATH
export PATH=/usr/local/python/bin:$PATH
start(){
   #### daily ####
   echo -n 'Starting $PROG_DAILY:''
   cd $DAILY_HOME
   [ -f $DAILY_LOCKFILE ] && failure && echo && return
   echo ''$DAILY'' >> $DAILY_LOG
   \$DAILY > /dev/null &
   echo $! > $DAILY_LOCKFILE && success
   echo
}
status(){
   if [ -f $DAILY_LOCKFILE ] ; then
      pid=' cat $DAILY_LOCKFILE'
       RETVAL='ps --no-heading -p $pid | awk '{print $1}' | wc -l'
       if [ $RETVAL = 1 ];then
          echo ''$PROG_DAILY (pid \$pid) is running...''
       else
          echo ''$PROG_DAILY dead but pid file exists''
      fi
   else
      echo ''$PROG_DAILY is stopped''
   fi
}
```

```
case ''$1'' in
    start)
        start
        ;;
    #stop)
    #
         stop
    #
         ;;
    status)
        status
        ;;
    *)
        echo $''Usage: \$0 {start|stop|status|restart}''
        exit 1
esac
```

・daily.sh は 自動解析, light curveの更新 を行うプログラムの呼び出しと、ribts2 への 解析結果を転送, 解析終了時に通知メールを送信を行うシェルスクリプトである。

```
#/bin/sh
dir='date --date='1 day ago' +%y%m%d'
DAILY_HOME=''/home/pat/analyzepyraf''
DAILY_LOCKFILE=''$DAILY_HOME/.dailyanalysis.pid''
DAILY_LOG=''$DAILY_HOME/log.log''
export PATH=/usr/local/bin:$PATH
export PATH=/usr/local/mitsume/bin:$PATH
export PATH=/usr/local/python/bin:$PATH
python auto_lc.py -l A $dir >> $DAILY_LOG
python draw_lc.py >> $DAILY_LOG
cp -r /home/pat/data/pat_analysis/mag_data/* /var/www/html/lc/
scp -r /home/pat/data/pat_analysis/mag_data/* \
pat@192.168.1.84:/home/httpd/html/lc/ >> $DAILY_LOG
scp -r /var/www/html/diary/$dir \
pat@192.168.1.84:/home/httpd/html/diary/ >> $DAILY_LOG
$DAILY_HOME/send_auto_lc.sh $dir
rm -f $DAILY_LOCKFILE
```

謝辞

本研究を進めるにあたって、たくさんの方々にお世話になりました。河合先生には、卒 |業研究からの続きとしてこの研究テーマを与えていただき感謝しております。2度も海外 の学会に参加する機会をいただき本当に貴重な経験をすることができました。谷津さんに は学部自体からたくさんお世話になりました。お忙しい中、明野まで一緒に作業にいって いただき助かりました。中森さんにはいろいろ質問に答えていただいたり、 tex のチップ スを教えていただきました。何か聞くときは中森さんへと思うぐらい便りになる方です。 ありがとうございました。金井さんには向かし学祭のときに大変お世話になりました。と ても責任感のある方で、イベントや行事などを取り仕切っていただき助かりました。ニコ ラスにはときどき英語をみていただいたり、隣の席で面白いことを言ってなごませていた だきました。戸泉くんには、授業とか Huntsville とかいろいろ楽しませてもらいました。 ありがとうございます。中嶋君には明野望遠鏡をメンテナンスやハード面などいろいろ担 当してもらい大変たすかりました。今後のご活躍を期待しております。森井さん、杉森く ん、薄井くん、遠藤くん、榎本くんいろいろありがとうございました。吉田様、黒田様、 柳沢様には可視光観測でたくさんのアドバイスをいただき大変感謝しております。下川辺 さんには時々河合研究室に遊びにきていただき、大変たのしいお話ができていいリフレッ シュになりました。小永井さんには、ときどき昼食をご一緒させていただいたり、海外の 学会の手続きを手伝っていただいたりお世話になりました。

そして、家族には時折夜遅くまで研究をする上でずいぶんと協力していただきました。 この協力がなければこの修論はできなかったかもしれません。本当にありがとうございま した。

160