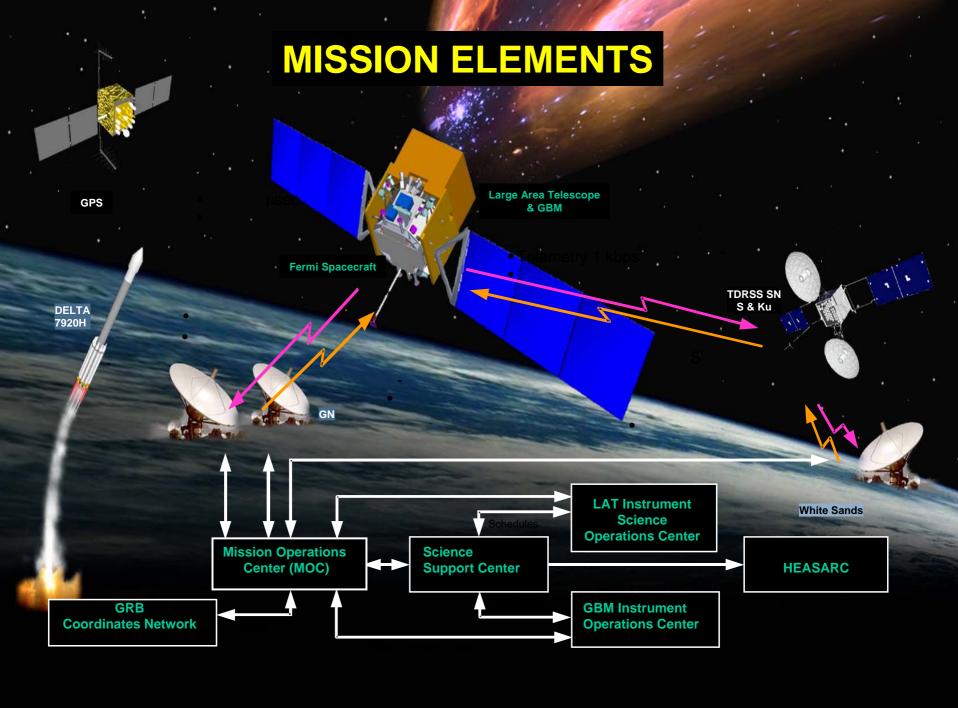


Fermi


Gamma-ray Space Telescope

Mission Overview and Data Release Plans

Tokyo Symposium

S. Ritz
NASA GSFC
on behalf of the Fermi Mission Team

see http://www.nasa.gov/fermi and http://fermi.gsfc.nasa.gov/ and links therein

The Observatory

Large AreaTelescope (LAT)
20 MeV - >300 GeV

Gamma-ray Burst Monitor (GBM)
NaI and BGO Detectors
8 keV - 30 MeV

KEY FEATURES

- Huge field of view
 - -LAT: 20% of the sky at any instant; in sky survey mode, expose all parts of sky for ~30 minutes every 3 hours. GBM: whole unocculted sky at any time.
- Huge energy range, including largely unexplored band 10 GeV -100 GeV. Total of >7 energy decades!
- Large leap in all key capabilities. Great discovery potential.
- 5-year mission (10-year goal)

The Accelerator

Launch!

- Launch from Cape Canaveral Air Station 11 June 2008 at 12:05PM EDT
- Circular orbit, 565 km altitude (96 min period), 25.6 deg inclination.

A moment later...

... and then ...

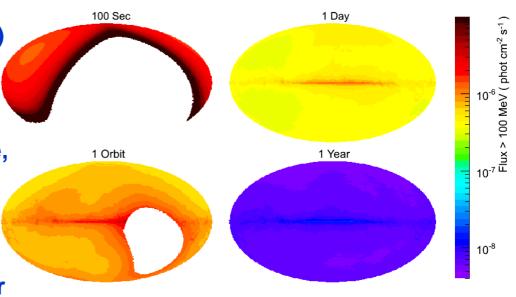
... on its way!

Operating modes

 Primary observing mode is Sky Survey

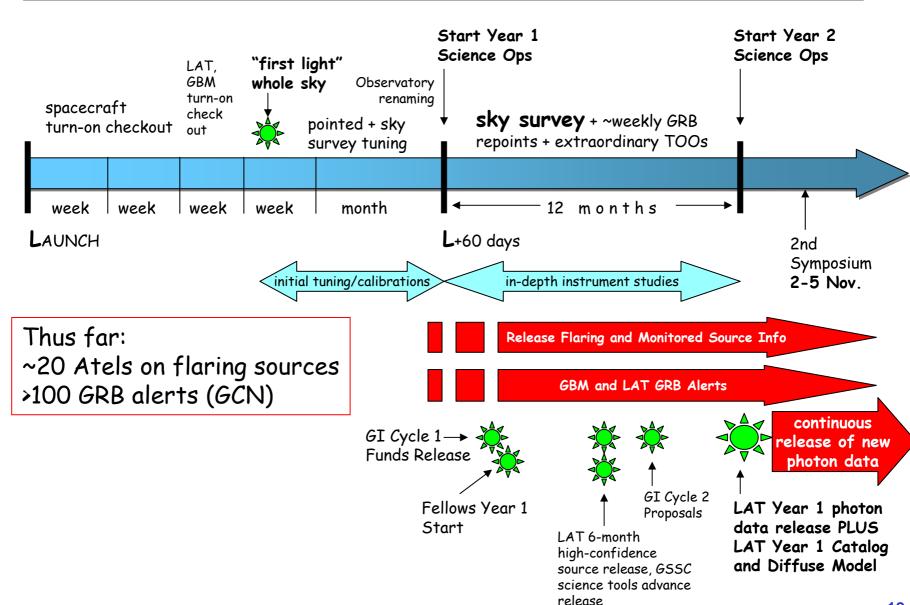

Full sky every 2 orbits (3 hours)

 Uniform exposure, with each region viewed for ~30 minutes every 2 orbits


 Best serves majority of science, facilitates multiwavelength observation planning

 Exposure intervals commensurate with typical instrument integration times for sources

EGRET sensitivity reached in days



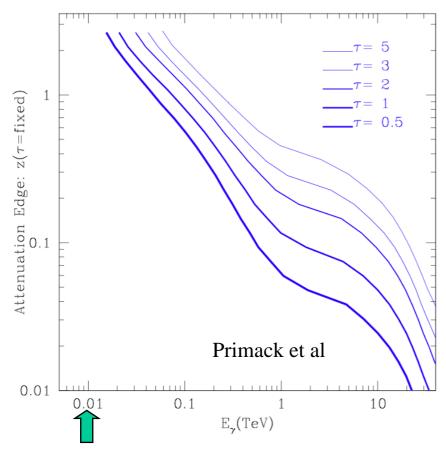
Autonomous repoints for onboard GRB detections in any mode.

Year 1 Science Operations Timeline Plan

Fermi Science

A very broad menu that includes:

- Systems with supermassive black holes (Active Galactic Nuclei)
- Gamma-ray bursts (GRBs)
- Pulsars
- Supernova remnants (SNRs), PWNe, Origin of Cosmic Rays
- Diffuse emissions
- Solar physics
- Probing the era of galaxy formation, optical-UV background light
- Solving the mystery of the high-energy unidentified sources
- Discovery! New source classes. Particle Dark Matter? Other relics from the Big Bang? Other fundamental physics checks.


Huge increment in capabilities.

Draws the interest of both the High Energy Particle Physics and High Energy Astrophysics communities.

An Important Energy Band

Photons with E>10 GeV are attenuated by the diffuse field of UV-Optical-IR extragalactic background light (EBL)

No significant attenuation below ~10 GeV.

only e^{-t} of the original source flux reaches us

EBL over cosmological distances is probed by gammas in the 10-100 GeV range.

In contrast, the TeV-IR attenuation results in a flux that may be limited to more local (or much brighter) sources.

A dominant factor in EBL models is the star formation rate -- <u>attenuation measurements</u> <u>can help distinguish models</u>.

Science Support Center (FSSC)

- Supports guest investigator program
- Provides training workshops
- Provides data, software, documentation, workbooks to community
- Archives to HEASARC
- Joint software development with Instrument Teams, utilizing HEA standards
- Located at Goddard

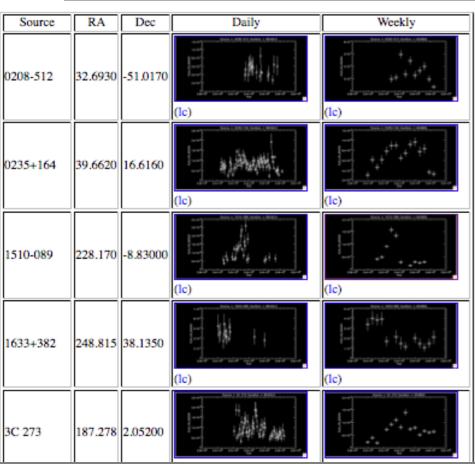
```
see http://fermi.gsfc.nasa.gov/ssc/
and help desk
http://fermi.gsfc.nasa.gov/ssc/help/
```

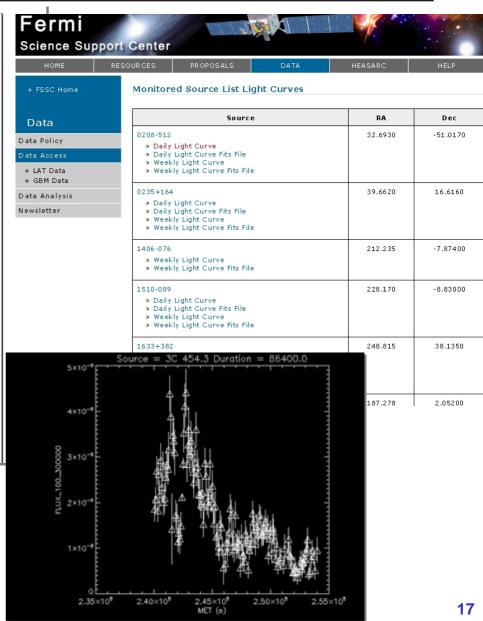

LAT First Year Source Monitoring List

http://fermi.gsfc.nasa.gov/ssc/data/policy/ LAT_Monitored_Sources.html

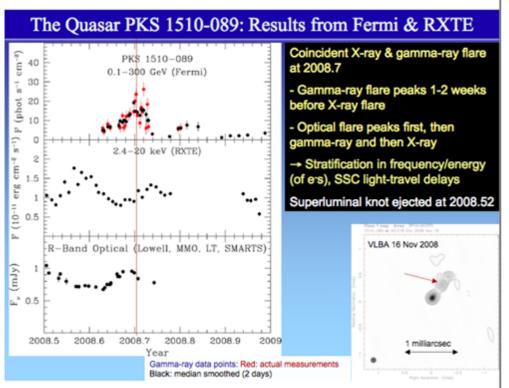
Light curves (daily and weekly integrations) in energy bands.

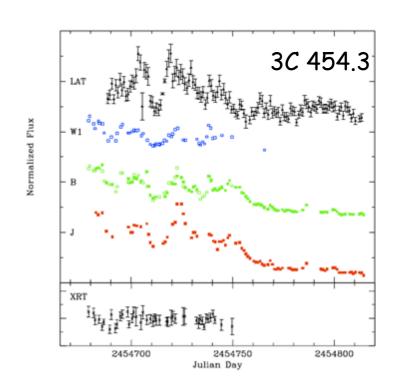
PLUS, same for any source flaring above 2e-6 ph/cm^2/s (lowering this now) until the average flux drops below 2e-7 ph/cm^2/s (two additional sources thus far: PKS 1454 and PKS 1502)


A "quicklook" analysis to get the results out as soon as possible. Tables may be updated as analysis and calibrations improve.


Updates now delivered daily!

Source Type	Source Name	EGRET Name	Average or Min. Flux (10 ⁻⁸ γ cm ⁻² s ⁻¹)	Galactic Lattitude	Redshift	TeV Source
Blazar	0208-512	3EGJ0210-5055	85.5 ± 4.5	-61.9	1.003	
	0235+164	3EGJ0237+1635	65.1 ± 8.8	-39.1	0.94	
	PKS 0528+134	3EGJ0530+1323	93.5 ± 3.6	-11.1	2.060	
	PKS 0716+714	3EGJ0721+7120	17.8 ± 2.0	28	0.3	
	0827+243	3EGJ0829+2413	24.9 ± 3.9	31.7	0.939	
	OJ 287	3EGJ0853+1941	10.6 ± 3.0	35.8	0.306	
	Mrk 421	3EGJ1104+3809	13.9 ± 1.8	65.0	0.031	Yes
	W Com 1219+285	3EGJ1222+2841	11.5 ± 1.8	83.5	0.102	
	3C 273	3EGJ1229+0210	15.4 ± 1.8	64.5	0.158	
	3C 279	3EGJ1255-0549	74.2 ± 2.8	57.0	0.538	
	1406-076	3EGJ1409-0745	27.4 ± 2.8	50.3	1.494	
	H 1426+428	NA		64.9	0.129	Yes
	1510-089	3EGJ1512-0849	18.0 ± 3.8	40.1	0.36	
	PKS 1622-297	3EGJ1625-2955	47.4 ± 3.7	13.4	0.815	
	1633+383	3EGJ1635+3813	58.4 ± 5.2	42.3	1.814	
	Mrk 501	NA		38.9	0.033	Yes
	1730-130 NRAO 530	3EGJ1733-1313	36.1 ± 3.4	10.6	0.902	
	1ES 1959+650	NA		17.7	0.048	Yes
	PKS 2155-304	3EG2158-3023	13.2 ± 3.2	-52.2	0.116	Yes
	BL_Lacertae (2200+420)	3EGJ2202+4217	39.9 ± 11.6	-10.4	0.069	Yes
	3C 454.3	3EGJ2254+1601	53.7 ± 4.0	-38.3	0.859	
	1ES 2344+514	NA		-9.9	0.044	Yes
нмхв	LSI+61 303 2CG135+01	3EGJ0241+6103	69.3 ± 6.1	1.0		Yes


Released Monitored Source Lightcurves



Guest Investigator AGN Studies

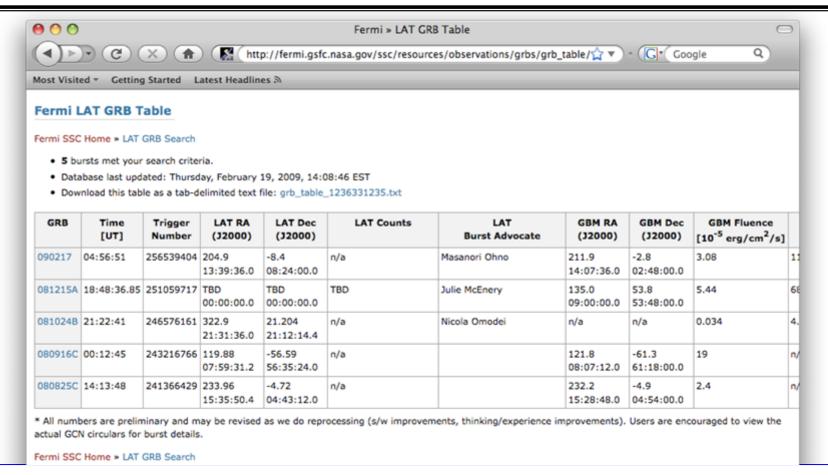
Fig. 1.— Multi-wavelength light curves of 3C 454.3 at (top panel) gamma-ray (0.1–300 GeV), UV (W1), optical (B), and IR (J) resolvengths from Fermi LAT, Swift UVOT, and SMARGS. Fluxes have been normalized to JD 254700. Light curves are offset for clarity—minor tick spacing corresponds to 50% change. Fluxes at JD 2544700 are 2.28×10⁻² ts s⁻¹ at 0.1–300 GeV, 1.64×10⁻²¹ erg s⁻¹ cm⁻² in W1, 2.21×10⁻¹¹ erg s⁻¹ cm⁻² in B, and 3.62×10⁻¹¹ erg s⁻¹ cm⁻² in J. (Bottom panel) Swift XRT 2-10 keV light curve, normalized to flux at JD 2454700 (2.90×10⁻¹¹ erg s⁻¹ cm⁻²). The IR/optical/UV variations are well correlated with the gamma-ray variations, with a lag of ≤1 day, while the (minimal) X-ray variability is uncorrelated. The variability has much higher amplitude in the J-band than in B, which can be explained if there is an relatively constant blue component, as expected for an accretion disk. At z=0.859, Balmer continuum from an accretion disk, as well as Fe II and Mg II emission lines would be redshifted into the B and V bands; Hα is shifted into the J band.

Marscher et al

Demonstrates the value of multiwavelength observations with Fermi data

Bonning et al arXiv:0812.4582v1

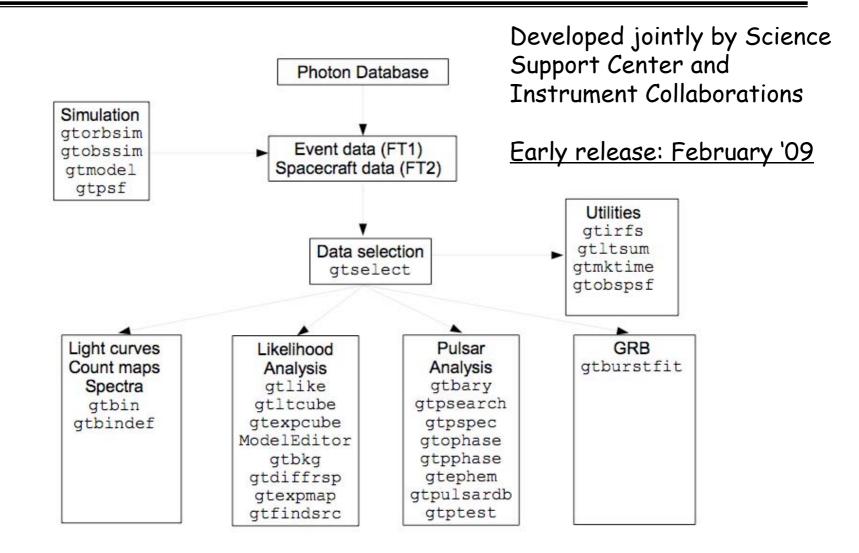
For campaigners' information and coordination, see http://fermi.gsfc.nasa.gov/science/multi


Observatory Data and GBM Data

- Predicted spacecraft position and attitude (where Fermi will be pointing)
- http://fermi.gsfc.nasa.gov/ssc/resources/timeline/ft2/

- GBM Trigger table and associated data
 - Position, trigger time and classification; Files containing count lists and binned counts.
- GBM Burst table
 - as above, plus further information including fluxes, fluences, T90/T50 when available.
- GBM daily data
 - detector count rates, monitoring of detector calibrations and spacecraft position and attitude.
- Some of the data are produced manually (e.g. response matrices and background spectra in the GBM trigger table) so may not be available as quickly as the automatically processed data types.
- Summary of all LAT-detected GRB
 - http://fermi.gsfc.nasa.gov/ssc/resources/observations/grbs/

LAT GRB Summary Info



Summary information -trigger time, sky position, net counts, GBM fluence - available

online

Tools With the Photon Data

Guest Investigator Cycle 2

Guest Investigator Cycle 2 proposals DUE March 6, 2009 See http://fermi.gsfc.nasa.gov/ssc/proposals/cycle2/

- expect to fund ~75 regular and up to 8 large projects:
 - detailed analyses of LAT photon candidate events
 - analyses of monitored sources and summary data
 - Fermi-related MW observations
 - In addition, NRAO and NOAO MOUs provide joint observing time through the regular Fermi GI program. See FSSC site.
 - Fermi-related theory
 - Fermi-relevant data analysis methodology

Symposium

http://fermi.gsfc.nasa.gov/science/symposium/2009/

2-5 November 2009

 International Organizing Committee Established

- Local Organizing Committee completing formation.
 - D. Thompson and N. Johnson, co-chairs

Summary

- Fermi is off to a great start!
 - instruments are beautiful. The gamma-ray sky is keeping its promise.
 Great cooperation across the international team.
- Already addressing many important questions from EGRET era
 - new analysis techniques and approaches are essential -- new topics!
 - the challenge of great discovery potential
- Charter Fermi Fellows:
 - » Nathaniel R. Butler (Berkeley)
 - » Vasiliki Pavlidou (Caltech)
 - » Uri Keshet (Harvard)
 - Now transitioning to Einstein Fellows program

Sign up for newsletters: http://fermi.gsfc.nasa.gov/ ssc/resources/newsletter/

- Guest Investigator Cycle 2 proposals DUE March 6, 2009
 - See http://fermi.gsfc.nasa.gov/ssc/proposals/cycle2/
- November 2-5 2009 International Fermi Symposium in Washington, DC
- let us hear from you (helpdesk email on the FSSC site)
- Gamma-ray data are for you! JOIN THE FUN!!

The Decadal Survey Process: Astro2010

The three pillars of the survey

- Science Assessment
- State of the Profession Assessment
- Prioritization

Committee on Astro2010

Roger Blandford, Chair, Stanford University

Lynne Hillenbrand, Executive Officer, California Institute of Technology

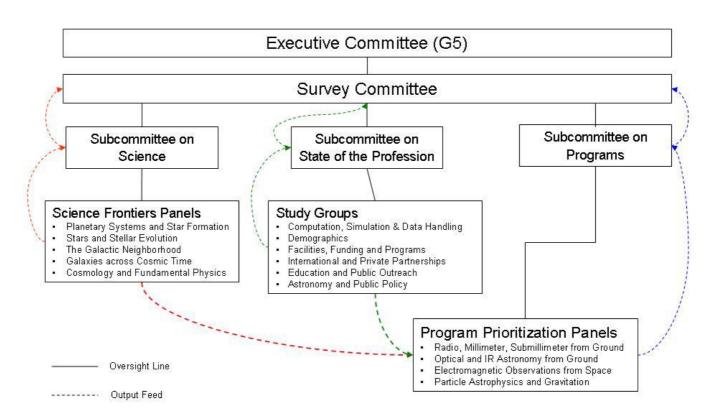
Subcommittee on Science

Martha P. Haynes, Vice Chair – Science Frontiers, Cornell University
Lars Bildsten, University of California, Santa Barbara
John E. Carlstrom, The University of Chicago
Fiona A. Harrison, California Institute of Technology
Timothy M. Heckman, Johns Hopkins University
Jonathan I. Lunine, University of Arizona
Juri Toomre, University of Colorado at Boulder
Scott D. Tremaine, Institute for Advanced Study

Subcommittee on State of the Profession

John P. Huchra, Vice Chair – State of the Profession, Harvard-University Debra M. Elmegreen, Vassar College
Joshua Frieman, Fermi National Accelerator Laboratory
Robert C. Kennicutt, Jr., University of Cambridge
Dan McCammon, University of Wisconsin-Madison
Neil de Grasse Tyson, American Museum of Natural History

Subcommittee on Programs


Marcia J. Rieke, Vice Chair – Program Prioritization, University of Arizona Steven J. Battel, Battel Engineering Claire E. Max, University of California, Santa Cruz Steven M. Ritz, NASA Goddard Space Flight Center Michael S. Turner, The University of Chicago Paul Adrian Vanden Bout, National Radio Astronomy Observatory A. Thomas Young, Lockheed Martin Corporation [Retired]

Astro2010 Charge

- The Astro2010 committee will survey the field of space- and ground-based astronomy and astrophysics, recommending priorities for the most important scientific and technical activities of the decade 2010-2020.
- The principal goals of the study will be to carry out an assessment of activities in astronomy and astrophysics, including both new and previously identified concepts, and to prepare a concise report that will be addressed to the agencies supporting the field, the Congressional committees with jurisdiction over those agencies, the scientific community, and the public.

Astro2010 Structure

Astro2010 Structure

More detail available at www.nationalacademies.org/astro2010

Science Frontier Panels

- Planetary Systems and Star Formation (PSF),
 Lee Hartmann
- Stars and Stellar Evolution (SSE),
 Roger Chevalier
- The Galactic Neighborhood (GAN),
 Mike Shull
- Galaxies across Cosmic Time (GCT), Meg Urry
- Cosmology and Fundamental Physics (CFP), David Spergel

Infrastructure Study Groups

- Computation, Simulation, & Data Handling (CDH)
- Demographics (DEM)
- Facilities, Funding and Programs (FFP)
- International and Private Partnerships (IPP)
- Education & Public Outreach (EPO)
- Astronomy & Public Policy (APP)

Programmatic Prioritization Panels

- Radio, Millimeter and Submillimeter from the Ground (RMS)
- Optical and Infrared Astronomy from the Ground (OIR)
- Electromagnetic Observations from Space (EOS)
- Particle Astrophysics and Gravitation (PAG)

Calls for Input

The Astro2010 Survey Committee, through its Subcommittees, has issued a series of calls for information. More detail on these calls is available on the Astro2010 web site.

www.nationalacademies.org/astro2010

Recent calls include:

- Notice of Interest from Activities (now closed 171 inputs are posted)
- Science White Papers: (now closed 320+ inputs to be posted soon)
- State Of The Profession Position Papers: Feb17 to Mar 15, 2009.
- Technology Development White Papers: Mar 16 to Mar29, 2009

Future calls will include a request for information from activities.

Community input is welcome at any time by emailing astro2010@nas.edu

Astro2010 Key Dates and Milestones in 2009

February 17 – March 15, 2009	Submission window for State of the Profession Position Papers			
February 27/28, 2009SFP: The G	alactic Neighborhood: First Meeting (Irvine CA)			
March 2/3, 2009	SFP: Cosmology and Fundamental Physics: First Meeting (Wash, DC)			
March 2/3, 2009	SFP: Galaxies Across Cosmic Time: First Meeting (Washington, DC)			
March 9/10, 2009	SFP: Stars and Stellar Evolution: First Meeting (Washington, DC)			
March 12/13, 2009	SFP: Planetary Systems and Star Formation: First Meeting (Wash, DC)			
March 16-29, 2009	Submission window for Technology Development White Papers			
March 28/29, 2009	SFP: The Galactic Neighborhood: Second Meeting (Washington, DC)			
March 30/31, 2009	SFP: Cosmology and Fundamental Physics: Second Meeting (Wash, DC)			
April 1, 2009	Deadline for Submission of responses to RFI (issued mid Feb)			
April 2/3, 2009	SFP: Galaxies Across Cosmic Time: Second Meeting (Washington, DC)			
April 9/10, 2009	SFP: Planetary Systems and Star Formation: Second Meeting (Irvine, CA)			
April 17/18, 2009	SFP: Stars and Stellar Evolution: Second Meeting (Irvine CA)			
May 4th/5th	Astro2010 town meeting and invited sessions at APS Meeting (Denv, CO)			
May 11, 2009	Closed summit meeting of Survey Committee, SFP chairs, ISG chairs, and			
	all PPP members (Irvine CA)			
May 12/13, 2009	First meeting of the 4 PPPs (Irvine CA)			
May/Jun/Jul, 2009 [TBC]	Jul, 2009 [TBC] Final meetings of SFPs			
June 8-11, 2009	Second meeting of the PPPs (Pasadena CA)			
Jul/Aug/Sep, 2009 [TBC]	9 [TBC] Final meeting of the PPPs			
Sept-Dec, 2009 [TBC]	Fourth and Fifth Survey Committee meetings			