

X-ray Binaries by Fermi LAT

Takaaki Tanaka (SLAC/KIPAC)

on behalf of the Fermi collaboration

First Results from Fermi Gamma-ray Space Telescope @ Tokyo Institute of Technology, Mar. 7, 2009

Binaries in Gamma-rays

Four Sources are claimed as TeV emitters All of the four are high-mass X-ray binaries

LS 5039

LS I +61° 303

Four Sources are claimed as TeV emitters All of them are high-mass X-ray binaries

Gamma-ray Space Telescope

O star + Black Hole MAGIC reported a flare

Periodic Behavior in TeV

Dermi

Gamma-ray Space Telescope

LS I +61° 303 P = 26.5 days

MAGIC (Albert et al., 2008)

Periodic behaviors reflect geometry & physical processes in the binary systems

EGRET Era

Expectation for Fermi-LAT

Larger effective area

- Better angular resolution
- Covers the all sky ~ every 3 hr

- Precise spectral/timing information
- Better localization
- Periodicity/Flare detection
- Connection with the TeV emission?
- Simultaneous observations with other wavelengths (Large contribution from the Hiroshima group with Suzaku, Kanata.....)

In the Bright Source List

Submitted to Astrophysical Journal Supplement - Not Yet Refereed

Fermi Large Area Telescope Bright Gamma-ray Source List

The *Fermi* LAT Collaboration

A. A. Abdo^{1,2}, M. Ackermann³, M. Ajello³, W. B. Atwood⁴, M. Axelsson^{5,6}, L. Baldini⁷,

arXiv: 0902.1340

Class	Number	
Radio/X-ray pulsar (PSR)	15	2 sources are
LAT gamma-ray pulsar (LAT PSR) HMXB	$\frac{14}{2}$	associated with HMXBs
BL LAC (bzb) FSRQ (bzq)	46 62	♦ LS I +61° 303
Other blazar (Uncertain type, bzu) Radio galaxy (rdg)	11 2	(Main topic of this talk)
Globular Cluster (glb, see text)	1	+ LS 5039
† Special cases (see Table 2)	13	(Work in progress)
Unassociated	38	

LS I +61° 303

\bullet We clearly detect the source (> 50 σ)

Gamma-ray

• The best fit position is $(\alpha, \delta) = (40.076, 61.233)$ with a 95% error radius of 1.8 arcmin, which is consistent with the location of the known optical counterpart

Clear variability seen in the light curve

Periodicity Detection!!

We detect a significant periodicity

Period = 26.34±0.25 days, which is compatible with the know orbital period

Highest flux around phase 0.3 and a smaller peak around phase 0.7

Orbit-by-Orbit

We've covered ~ 8 orbits

Investigating signs of orbit to orbit variability

More data is needed to give an answer

Spectrum

Unbinned likelihood fitting of the Fermi flux to a power law yields $dN/dE = A E^{-\Gamma}$:

Flux (E>100 MeV)

Gamma-ray Space Telescope

- = 0.77 ± 0.03 (stat) ± 0.21 (sys) 10⁻⁶ ph/cm²/s
- $\Gamma = 2.40 \pm 0.03$ (stat) ± 0.17 (sys)

No apparent dependence of photon index on orbital phase

Note: The Fermi and TeV data are NOT simultaneous

Points: Fitted energy bins Red: Fermi unbinned power law fit Grey: EGRET Blue: MAGIC (Only phase 0.4-0.7) VERITAS data points overlaid (systematic errors not shown)

Other Sources?

MAGIC reported a flare at VHE from Cyg X-1 in 2006

- We are monitoring 68 sources on a daily basis
- Challenging work due to the high contribution of diffuse emission in the galactic plane.

Flaring Sources

 The LAT has and will discover new unknown sources; some of which could potentially be gamma-ray binaries.

2 bright transients detected in the
Galactic Plane (ATels 1771 &1788)

- Two HMXBs are detected by the Fermi LAT
- Firm detection of LS I +61° 303
- First detection of orbital modulation (P = 26.5 days) in the GeV domain from LS I + 61° 303
- LS 5039 under investigation
- More binaries to look for both persistent and flaring