

Environments of massive stars and the upper mass limit

Paul Crowther

Environment

- HII regions: Signatures of massive stars
- Massive stars & star clusters
- Why so few SN in HII regions?
- Upper mass limit?

Distributed star formation: OB Associations

Orion Nebula Cluster (θ¹C Ori)

De Zeeuw et al. 1999

HII regions: Signatures of massive stars

Milky Way Giant Hll regions

ESO 2.2m/WFI (BVR)

Extragalactic Giant Hll regions

Large s.f. regions host multiple discrete stellar populations (separated by several Myr).

LMC

LMC Hα/[SII]/[OIII] MCELS (R.C. Smith, CTIO)

Anatomy of a giant HII region: 30 Doradus

1) Young (Orion phase) embedded O stars to the N & W of R136

Anatomy of a giant HII region: 30 Doradus

7' = 0.1 kpc

1) Young (Orion phase) embedded O stars to the N & W of R136

2) Central early-O (Carina phase) concentration, including R136

Anatomy of a giant Hll region: 30 Doradus

7' = 0.1 kpc

- 1) Young (Orion phase) embedded O stars to the N & W of R136
- Central early-O (Carina pháse) concentration, including R136
- 3) Older late-O & early-B supergiants (Scorpius OB1 phase) throughout the field

Anatomy of a giant Hll region: 30 Doradus

7' = 0.1 kpc

- 1) Young (Orion phase) embedded O stars to the N & W of R136
- 2) Central early-O (Carina phase) concentration, including R136
- 3) Older late-O & early-B supergiants (Scorpius OB1 phase) throughout the field
- 4) Sco OB1-phase association around R143

Anatomy of a giant Hll region: 30 Doradus

- 1) Young (Orion phase) embedded O stars to the N & W of R136
- 2) Central early-O (Carina pháse) concentration, including R136
- 3) Older late-O & early-B supergiants (Scorpius OB1 phase) throughout the field
- 4) Sco OB1-phase association around R143
- 5) Older cluster 3' NW of R136 (h & χ Persei

7' = 0.1 kpc

Starburst galaxies: NGC 3125

Young massive clusters in dwarf starburst galaxies (e.g. NGC 3125 @11Mpc, Hadfield & Crowther 2006)

Environment

- HII regions: Signatures of massive stars
- Massive stars & star clusters
- Why so few SN in HII regions?
- Upper mass limit?

Massive stars & star clusters

<u>O stars (>20 M_{sun})</u>

 Formed in clusters*, short-lived, though could be ejected (by dynamical interactions or recoil following companion SN explosion).

Early B stars (8-20 M_{sun})

 If formed in low mass cluster, sufficiently long-lived that cluster may dissolve into field population.

*(mostly). A few % of O stars appear to have formed "outside a clustered environment" (de Wit et al. 2005)

Massive stars in `isolation'?

Several very massive stars in 30 Dor are located far away from the central cluster R136, incl. VFTS 16 (Evans et al. 2010) VFTS 682 (Bestenlehner et al. 2011). Formed in situ or dynamically ejected (`runaways')?

Cluster mass-max stellar mass

Cluster Mass $\sim 10^2 M_o$ to host at least one massive star (>8M_o)

Cluster mass $\sim 10^3 M_o$ to host at least one O star (>25 M_o)

Cluster mass ~10⁴ M_o to host one 100+ M_o star (>100 massive stars in total)

Weidner et al. (2010)

Young star clusters

ONC $(2x10^{3} M_{o})$

NGC 3603 (10⁴ M_o) M_{max}~170 M_o (3603-B)

 $\rho \text{ Oph } (10^2 \text{ M}_{o})$ $M_{max} \sim 8 M_o (\rho \text{ Oph})$

Rare in small ponds, but common in big ones..

Tokyo fish market (earlier today)

Hll regions ⇔ SFR

Kennicutt (1998): "Only stars with M>10M_{sun} $(\tau < 20 \text{ Myr})$ contribute significantly to the integrated ionizing flux, so the emission lines provide a nearly instantaneous measure of the SFR"

OB stars & Hll regions

Spectral	Mass	T _{eff}	N _{LyC}
Туре	M _o	K	10 ⁴⁹ s ⁻¹
O3V	75	45,000	5
O5V	51	41,000	1.6
07V	36	37,000	0.7
O9V	25	33,000	0.13
B0V	19	30,000	0.025
B1V	14	26,000	0.002
B2V	9	21,000	0.0002

 $1 \times N_{LyC}(O3V, 75 M_o) = 25,000 \times N_{LyC}(B2V, 9 M_o)$

Type II ccSNe ⇔ SFR?

Kennicutt (1998): "Only stars with M>10M_{sun} $(\tau < 20 \text{ Myr})$ contribute significantly to the integrated ionizing flux, so the emission lines provide a nearly instantaneous measure of the SFR"

Anderson & James (2008): "Type II SN progenitor population does not trace underlying star formation"

• Environment

- HII regions: Signatures of massive stars
- Massive stars & star clusters
- Why so few SN in HII regions?
- Upper mass limit?

Statistics?

 Local (<2000km/s) ccSN sample with HST/ground-based imaging (1999-2008.5):
– 0 of 20 Type II's (mostly II-P) in bright HII regions, (although many in loose associations). 2004am+2004dj in compact clusters

Smartt et al. (2009 & priv comm.)

SN 2004am (II-P)

Spatially coincident with high mass, relatively young star cluster: M82-L (10-35 Myr, Lançon et al. 2008; 4x10⁶ M_o McCrady et al. 2007)

Statistics?

- Local (<2000km/s) ccSN sample with HST/ground-based imaging (1999-2008.5):
 - 0 of 20 Type II's (mostly II-P) in bright HII regions, (although many in loose associations).
 2004am+2004dj in compact clusters
 - 1 of 10 Type lb/c's in a large star-forming complex (SN 2007gr) although no HII emission at compact cluster position

Smartt et al. (2009 & priv comm.)

Hunter et al. (2009)

Statistics?

- Local (<2000km/s) ccSN sample with HST/ground-based imaging (1999-2008.5):
 - 0 of 20 Type II's (mostly II-P) in bright HII regions, (although many in loose associations).
 2004am+2004dj in compact clusters
 - 1 of 10 Type Ib/c's in a large star-forming complex (SN 2007gr) although no HII emission at compact cluster position
- More extensive study (albeit at larger distances) by James & Anderson (2006) & Anderson & James (2008): <u>Anderson talk</u>

Smartt et al. (2009 & priv comm.)

Wolf-Rayet stars ⇔ HII regions

- 1) VLT/Gemini survey of Wolf-Rayet (WR) population of nearby star-forming galaxies (talk: Joanne Bibby)
- 160 WR candidate regions in NGC 5068 (~5 Mpc) from narrow-band images.
- 3) Moderate star formation rate (~0.6 M_{sun}/yr)

50% of Wolf-Rayet candidates are associated with either giant or bright HII regions, 25% with "faint" nebulosity & 25% without any nebular association.

LMC: Wolf-Rayet stars

1) 78/134 (58%) of LMC Wolf-Rayet population lie within "OB associations" 2) 112/134 (83%) of Wolf-Rayet stars lie within catalogued HII regions

Star clusters: Ages

HII region	Hill reg	ion	Anglo-Australian Obs	servatory		
<1Myr	~1.5M	yr	~3Myr	~	~5My	/r 🕨
Object	Visually Brightest Stars	MS 7 Spectrum	Turnoff $Mass[M_{\odot}]$	Age [yrs]	H II, Dust	Red Sg
Orion Nebula Carina Nebula Scorpius OB1 Westerlund 1 Perseus OB1	ZAMS O, (IR) O2, WNL OB Sg AF Sg AF Sg	(PMS) O3 O6 O7–O8 B0–B1	$100 \\ 50 \\ 35 \\ 20$	$< 10^{6} \ 1-2 imes 10^{6} \ 3-4 imes 10^{6} \ 4-5 imes 10^{6} \ 7-9 imes 10^{6}$	Yes Yes No No No	No No No Yes Yes

Walborn (2009)

Why so few SN in HII regions?

40

20

10

Mass

M

Intermediate mass clusters with M_{max}~30 M_o (mid O). Orion-type HII region. Fades after few Myr.. so no HII region at time of ccSN

> Low mass clusters with M_{max}~10 M_o (early B). No HII region from type II-P progenitor

10 20 Age (Myr)

Giant Hll regions

Large s.f. regions host multiple discrete stellar populations (separated by several Myr).

Some SN will be associated with bright HII regions, (albeit not necessarily a solitary cluster).

450 pc

LMC/N44

SNe: Why rarely associated with Hll regions?

• Don't expect most ccSNe to be associated with s.f. regions..

• Isolated star cluster:

- HII region absent for 10M_o progenitor, faint for intermediate mass (25 M_o) progenitor
- HII region *may* still be bright for a very massive (~100? M_o) progenitor..
- Large star forming complex:
 - Giant HII region bright for >10Myr (sequential s.f.), so 20-50+ M_o progenitors would appear to be "associated" with star-forming region..

• Environment

- HII regions: Signatures of massive stars
- Massive stars & star clusters
- Why so few SN in HII regions?
- Upper mass limit?

Figer (2005), Nature

ASTRONOMY AND ASTROPHYSICS LIBRARY

Very massive stars don't exceed the Eddington Limit (at least not ZAMS ones)

Eddington Limit (Γ_e =1)

Big game hunting: Where to look?

10⁴ M_o NGC 3603

Arches (G.C)

 $2x10^4 M_o$

5x10⁴ M_o R136a (LMC)

R136

Star-Forming Region 30 Doradus

HST • WFC3/UVIS

NASA, ESA, F. Paresce (INAF-IASF, Italy), and the WFC3 Science Oversight Committee

STScI-PRC09-32a

Z

R136: VLT/MAD imaging

R136: VLT/SINFONI spectroscopy

Masses of brightest R136 stars?

Comparison of T_{eff} , $logL/L_o$ with evolutionary models (Yusof, Hirschi et al. 2012).

Initial masses of R136 stars?

M_{current} = 135-265 M_o, ages ~ 1.5-2 Myr

Evolutionary models adopt theoretical rates of mass loss (several x 10^{-5} M_{sun}/yr*) M_{init}=165-320M_o

*Spectroscopic dM/dt ~ 5 x 10⁻⁵ M_{sun}/yr

Gold standard or sub-standard?

Spectral analysis + evolutionary models M_{current}:120 M_o + 92 M_o

NGC 3603 hosts an eclipsing binary A1a+b for which dynamical masses have been derived M_{dyn} :116±31 M_{o} + 89±16 M_{o} (Schnurr et al. 2008)

Surprising?

The Slope of the Upper End of the IMF and the Upper Mass Limit: An Observer's Perspective

Philip Massey1

¹Lowell Observatory, 1400 W Mars Hill Road, Flagstaff, AZ 86001

Abstract. There are various ways of measuring the slope of the upper end of the IMF. Arguably the most direct of these is to place stars on the H-R diagram and compare their positions with stellar evolutionary models. Even so, the masses one infers from this depend upon the exact methodology used. I briefly discuss some of the caveats and go through a brief error analysis. I conclude that the current data suggest that the IMF slopes are the same to within the errors. Similarly the determination of the upper mass "limit" is dependent upon how well one can determine the masses of the most massive stars within a cluster. The recent finding by Crowther et al. (2010) invalidates the claim that there is a $150M_{\odot}$ upper limit to the IMF, but this is really not surprising given the weakness of the previous evidence.

Jun 2010 Sedona workshop

Local PISNe?

Upper limit $m_{up} > 150 M_{o}$. required for the possibility of pair instability SNe (PISNe) in local universe.. (SN 2007bi?? Gal-Yam et al. 2009 & talk)

Langer (2009)

Death of Very Massive Stars

Very Massive Stars:

- <u>Rare</u>:
 - Limited to high mass (>10⁴ M_o) young (<2 Myr) clusters. Only ~15 stars initially more massive than >150 M_o known in Milky Way & Mag Clouds.
- Location:
 - 'Isolated' clusters (e.g. Arches) or within a large starforming complex (30 Doradus). Not <u>all</u> large s.f. complexes will host sufficiently massive clusters (e.g. NGC 604/M33).
- <u>Fate</u>: Very sensitive to mass-loss prescription:
 - for $Z > Z_{LMC}$: core-collapse SN?;
 - For Z < Z_{SMC} : pair-instability SN?