SUPERLUMINOUS SUPERNOVAE

Robert Quimby (University of Tokyo, Kavli IPMU) March 12, 2012

Absolute Magnitude Distribution of Supernovae

SN 2006gy

SLSN-IIn Spectra

SN 2005ap

- Spectroscopic redshift z=0.283
- Peak absolute magnitude about -22.7 (unfiltered)
- Observed light curve rise = 7 days
- Estimated rise time >20 days?

SLSN-Ic Spectra

SLSN Light Curves

Pair-Instability SNe

- First Proposed it the 1960's (Rakavy et al. 1967; Barkat et al. 1967)
- Massive stars are supported by radiation pressure
- At high temperatures, photons are created with E > e+e-
- Losses to pair production soften the EOS, and lead to instability
- Expected fate of the first (low metal, high mass) stars

March 12, 2012

SN 2007bi

- Optical light curve decay rate consistent with $\sim 7 M_{\odot}$ of ⁵⁶Ni
- Iron abundance in nebular spectra also consistent with \sim 4-7 M $_{\odot}$ of ⁵⁶Ni

March 12, 2012

Robert Químby

0

Late-Time Light Curve

March 12, 2012

Interaction Power

Ejecta run into surrounding material (progenitor wind, shells, etc.)

Smith et al. 2008

SN 2008es (SLSN-II)

Shell Scenario

- outer shell expanding at a few 1000 km/s
- energy injected from with in

Magnetar Power

March 12, 2012

Peak Luminosity (10⁴³ ergs s⁻¹)

100

10

0.1

3

I ms

10

10

30

100

Robert Químby

14

Host Galaxies

15

SLSN-IIn Hosts

March 12, 2012

SLSN-Ic Hosts

Local SLSN Rates (based on ROTSE-IIIb sample)

All SLSN-like events (z~0.2; M = -22.0 \pm 0.5 mag): ~10⁻⁷ events/year/Mpc³

SLSN-IIn (2006gy-like events) (z~0.1; M = -21.5 \pm 0.5 mag): ~10⁻⁷ events/year/Mpc³

SLSN-Ic (2005ap-like events) ($z\sim0.2$; M = -22.5±0.5 mag): ~10⁻⁸ events/year/Mpc³

Compare to CCSN: ~1x10⁻⁴ events/year/Mpc³ and SNIa: ~3x10⁻⁵ SN/year/Mpc³

March 12, 2012

Growing SLSN Sample

Supernova	Redshift	Absolute peak [mag]	Radiated energy [erg]	Reference
SLSN-PI				
SN 2007bi	0.1289	-21.3	$1-2 imes 10^{51}$	Gal-Yam et al. 2009
SN 1999as	0.12	-21.4		Hatano et al. 2001
SLSN-II	2.0 m0mmm			
CSS100217	0.147	-22.7	1.3×10^{52}	Drake et al. 2011
SN 2008fz	0.133	-22.3	1.4×10^{51}	Drake et al. 2010
SN 2008am	0.2338	-22.3	2×10^{51}	Chatzopoulos et al. 2011
SN 2008es	0.205	-22.2	1.1×10^{51}	Gezari et al. 2009; Miller et al. 2009
SN 2006gy	0.019	-22.0	$2.3 - 2.5 imes 10^{51}$	Ofek et al. 2007; Smith et al. 2010
SN 2003ma	0.289	-21.5	4×10^{51}	Rest et al. 2011
SN 2006tf	0.074	-20.7	7×10^{50}	Smith et al. 2008
SLSN-I	and an address of	10000 1.00		Same for the strength down in the contraction of the state
SN 2005ap	0.2832	-22.7	1.2×10^{51}	Quimby et al. 2007; 2011
SCP 06F6	1.189	-22.5	1.7×10^{51}	Quimby et al. 2011
PS1-10ky	0.956	-22.5	$0.9 - 1.4 imes 10^{51}$	Chomiuk et al. 2011
PS1-10awh	0.908	-22.5	$0.9-1.4 \times 10^{51}$	Chomiuk et al. 2011
PTF10atu	0.501	-22.0		Quimby et al. 2011
PTF10cnd	0.258	-22.0	1.2×10^{51}	Quimby et al. 2011
SN 2009jh	0.349	-22.0		Quimby et al. 2011
SN 2010gx	0.230	-21.2	6×10^{50}	Quimby et al. 2011; Pastorello et al. 2010

Gal-Yam (submitted)

Palomar Transient Factory

Link together the wide field survey potential of the 48", multiband photometric screening with the 60", and spectroscopic typing by the 200" telescopes

P48 (survey telescope)

PTF SLSN 11hzx **llrks** 11dij **11dsf** 10aagc 10yyc **10xee** 10vqv 10uhf 10tpz 10scc 10nmn 10qwu 10jwd 10qaf 10cwr 1000e 10bjp **10heh 09cwl** 09cnd 09uy 09atu

P60 primary follow-up telescope

Explore known transients in new ways Hunt for new transient classes

SLSN Flavors

Have Hydrogen

No Hydrogen

fast decline **SN 2005ap**

slow decline SN 2007bi

solar mass 56Co

800

700