The mass-loss dominated lives of the most massive stars

Jorick S. Vink Goetz Graefener Joachim Bestenlehner

Armagh Observatory (Northern Ireland)

Outline

- Introduction on mass loss
- Gamma-dependence (WNh stars)
- Z-dependence
- Teff-dependence

(GRBs) (LBVs and SNe II)

Mass Loss

Peeling off the star → O → LBV → Wolf-Rayet → SN Ibc (Conti 1976)

Removal of angular momentum

(Langer 1998, Maeder & Meynet 2000)

Upper HRD- Massive Stars

Upper HRD- Massive Stars

Upper HRD- Massive Stars

The most massive star?

How massive is the most massive star?

$$g_{\rm rad} = \frac{\kappa F}{c} = \frac{\kappa L}{4\pi R^2 c}$$

How massive is the most massive star?

$$g_{\rm rad} = \frac{\kappa F}{c} = \frac{\kappa L}{4\pi R^2 c}$$

$$g_{\rm grav} = \frac{GM}{R^2}$$

How massive is the most massive star?

$$g_{\rm rad} = \frac{\kappa F}{c} = \frac{\kappa L}{4\pi R^2 c}$$

$$g_{\rm grav} = \frac{GM}{R^2}$$

$$\Gamma = \frac{g_{\rm rad}}{g_{\rm grav}} = \frac{\kappa L}{4\pi c G M}$$

Eddington Gamma Limit

- Upper Mass Limit
- Wind Mass Loss
- WR+LBV Radii & SNe/GRB progenitor modelling

Confirmation "isolated" VFTS 682?

Bestenlehner et al. (2011)

VFTS: VIt Flames Tarantula Survey Evans et al. (2011)

PISN

Intermediate mass BH

- No Mass Loss?
- Modest loss?
- Strong Mass loss? Stellar BH
- Extreme loss? Neutron star

Line-driven winds

dM/dt = f(L,M,Z,Teff)

Monte Carlo approach

Abbott & Lucy 1985

Vink et al. (2000) dM/dt = f(L,M,Z,Teff)

Vink et al: log(dM/dt) = -4.2
 Mass = 150 Msun lower PISN range

- Vink et al: log(dM/dt) = -4.2
 Mass = 150 Msun lower PISN range
- Previously: Evaporation!

 $\log(dM/dt) = -3.9$

- Vink et al: log(dM/dt) = -4.2
 Mass = 150 Msun lower PISN range
- Previously: log(dM/dt) = -3.9
 Evaporation!

 Extreme clumping log(dM/dt) = -4.9 Mass = 270 Msun upper PISN range

Gamma-dependence

Mass loss - Gamma (L/M) Dependence

Vink et al. (2011)

Mass loss - Gamma (L/M) Dependence

Vink et al. (2011)

Empirical Evidence: Graefener et al. (2011)

Z dependence

Progenitor for Collapsar model

Woosley (1993)

- Rapidly Rotating
- No Hydrogen envelope: Wolf-Rayet

 But strong WR winds: Angular Momentum Loss

WR stars produce Carbon !

Geneva models (Maeder & Meynet 1987)

WR stars produce Carbon !

Geneva models (Maeder & Meynet 1987)

Which element drives WR winds?

- If C \rightarrow Mdot does NOT depend on host Z

- if Fe \rightarrow Mass loss DOES scale with host Z

Z-dependence of WR winds

Vink & de Koter (2005)

The WR radius problem

Observed WR stars are factor ~2 cooler than predicted

OPAL Fe-bump may inflate envelope

WR+LBV Envelope Inflation

T dependence

LBVs in the HRD

Smith, Vink & de Koter (2004)

The mass loss of LBVs

Data Stahl et al. (2001)

Vink & de Koter (2002)

Radio supernova lightcurves

Radio supernova lightcurves

Do LBVs explode?

Trundle et al. (2008)

Changing mass loss!

Groh & Vink (2011)

Progenitor image of 2005gl

Gal-Yam & Leonard (2009)

Mass loss depends on Gamma (L/M)

Summary

- Mass loss depends on Gamma (L/M)
- Mass loss depends on Z (GRBs)
- Mass loss depends on T (LBVs & SNe II)

Summary

- Mass loss depends on Gamma (L/M)
- Mass loss depends on Z (GRBs)
- Mass loss depends on T (LBVs & SNe II)
- Links between WRs+LBVs & SN-types