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Diversity of CC SNe and their progenitors

 Stars above 8-10Msun explode as CC SNe
* What progenitor differences produce diversity of transient
phenomena?

SNIIP—II— IIb—IIn—Ib—>Ic

* Sequence of increasing pre-SN mass loss?

« How does progenitor mass, metallicity, rotation, binarity,
produce these differences?
* Which progenitor stars produce SN 'impostors'?
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Constraining progenitor properties

 Direct detections provide detailed

info for individual nearby SNe
- low statistics, long-term answers
- see van Dyk talk

» Host galaxy studies allow statistical

samples to be studied
- multiple stellar populations
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» Constraining progenitor
properties using environments
within host galaxies

- allows statistical studies
- differentiate between Arcavi et al. (2010)
stellar populations




IAU symposium 279: “Deaths of Massive stars: Supernovae and Gamma-Ray Bursts”, Nikko 15/03/12

Environments of SNe within host galaxies

Spatial correlations of SNe with host galaxy star formation

» Search for differences in the association of explosion sites
with SF regions by SN type
- use of Ho and near-UV host galaxy imaging
- investigate differences in progenitor mass

Host HII region metallicity derivations

e Evaluate differences between SNII and SNIbc environment

metallicities
- host HII region spectroscopy
- investigate differences in progenitor metallicity
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Spatial correlations with host galaxy SF

» Host galaxy Ha imaging of large sample of CC SN

- 162.5 SNII (58 IIP 13 IIL, 12.5 IIb, 19 IIn, 12 'impostors!)
- 97.5 SNiIbc (40.5 Ib, 52 Ic)

* GALEX near-UV imaging also used
 Hoo emission = 'on-going' SF: <10-15 Myr
* Near-UV emission = recent' SF: 16-100 Myr
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Host galaxy pixel statistics

* 'NCR' statistic to give the degree of association of an
individual SN to the emission of its host galaxy
- James & Anderson (2006) (also Fruchter et al. 2006)
» Statistic gives for each object a value between 0 and 1
- NCR value of 0 means zero flux or sky values
- value of 1 means SN falls on highest count pixel

* Build up distributions of all SN types
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Cumulative distributions

* Increasing association to emission means shorter lived,
higher mass progenitors

* Progenitor mass sequence

observed: Ia-II-Ib-Ic
* SNIbc show higher
correlation to Ho than

SNII -> more massive
* SNIb do not trace
'on-going' SF: binaries?

SNla 97
SNII 162.5
SNIb 40.5
SNlc 52
SNIbc 97.5
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Cumulative distributions

. SNIIP — SNIIL — SNIIb

* SN 'impostors' and SNIIn
show lowest correlation
with emission; lower mass
progenitors?

* SNIIL and SNIIb higher
mass progenitors than IIP?

‘impostors’ 12

SNIIP 58
SNIIL 13
SNIIb 12.5
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'On-going' and 'recent' SF

» SNIIB IIn and 'impostors': correlation to 'recent' SF
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 All show increased association to SF on longer timescales
» Additional evidence for low mass progenitors?
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Progenitor mass constraints

* SNIbc show higher association to 'on-going' SF than SNII
- higher mass progenitor stars
- NOTE, this does not necessarily mean single stars

» Progenitor mass seqeunce: Ia-II-Ib-Ic

» SNIc arise from the highest mass stars that explode in CC

* SNIIP trace SF on timescales 16-100Myr
- consistent with direct detection constraints
* SNIIn do not trace SF on the shortest timescales
- majority of progenitors do not arise from very massive
progenitor stars
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Host HII region metallicities

» Host HII region optical spectroscopy obtained for 96 CC SNe

- initial sample published in Anderson et al. (2010)
- 58 SNII, 38 SNIbc

* Main aim to evaluate differences in progenitor metallicties
between hydrogen rich and hydrogen poor SNe

- other studies on SNIb-Ic-BLIc-GRBs; Modjaz et al.
(2011), Leloudas et al. (2011)

» Environment metallicities derived from ratio of strong

emission lines
- Pettini & Pagel O3N2 or N2 used
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Host HII region metallicities

9.0

©
)

log(0O/H) + 12

®
o

7.5

SNII (58)
SNIbc (38)

-18.0

-20.0

MB

-22.0

FRACTION OF TOTAL SNe

1.0

0.8

0.6

0.4

0.2

0.0

| SNII (58)

SNIb (16
SNIc (19
SNIbc (38)

8.2 8.4 8.6
CUMULATIVE METALLICITY

* Only 0.04 dex difference between Ibc and II

» Tentative metallicity sequence: II-Ib-Ic
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Progenitor metallicity constraints

» SNIbc have higher metallicity progenitors than SNII, but
difference is not statistically significant
- metallicity does not significantly affect type produced?
» SNII-Ib-Ic metallicity sequence is as expected, but, again
not significant
- significant differences seen elsewhere (see Modjaz talk)
» Caveat in this work is the lack of SNe in low luminosity
host galaxies
- sample taken from Asiago and is hence dominated
by massive galaxies

* Representative sample needed from un-targeted survey
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Summary/conclusions

* SNIbc arise from shorter lived and hence more massive stars
than SNII

* Progenitor mass sequence observed: SNIa-II-Ib-Ic

 SNIb arise from less massive stars than SNIc

e SNIIP results consistent with direct detections

* SNIIn do not arise from very massive stars

* No large metallicity difference between SNII and SNiIbc
» Tentative metallicity sequence: SNII-Ib-Ic

* Progenitor mass is dominant (over metallicity) feature that
determines SN type
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NCR value 0.401

SN pixel value 4.5
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SNIl non-0 115 1
SNIb non-0 31.56 _
SNIc non-0 47 J
SNIbc non—-0 82.5 .
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