SNE IB/C WITH AND WITHOUT GRBS

Maryam Modjaz (NYU)

SN ZOO Spectra: Type I (no H) and Type II (with H)

SN CLASSIFICATION

• Spectra: Type I (without H) and Type II (with H)

>~8 Mo

SN CLASSIFICATION

• Spectra: Type I (without H) and Type II (with H)

>~8 M_o

UNDERSTANDING SNE IB/C WITH AND WITHOUT GRBS

- Focus on Stripped SNe with and without GRBs to elucidate conditions and progenitors of different types of explosions
- 2-thronged approach:
 - 1) (Early-time) Spectra: b/c classifying feature
 - 2) Measured Metallicities at SN sites: b/c impact of Z expected from stellar evolution

"Large" data-sets: robust statistical analysis

NEED FOR STUDYING STRIPPED SNE **SN** Fractions

lbc 19%

24%

57% (Volumetric, from LOSS)

Smith et al. 2011)

(Li et al 2011,

- **Stellar Astrophysics** •
- **Connection of SN Ic-bl to GRBs**
 - What is the range of SN Ic & SN Ic-bl properties?
 - How aspherical are (normal) SN Ib/c explosions?
- **Potential contamination** of high-z SN Ia searches by SNe Ic (Clocchiatti et al. 2000, Homeier 2005)
- Identify & compare to "new" classes of transients/SNe (e.g., igodolOverluminous SNe Ic, Ca-rich transients)
- However, only a handful of well-studied objects
 - 93J, 94I, 99ex, 05bf, 07gr, 07Y, 08D, 08ax, 09jf, 11dh, & SN-GRBs
 - Larger SN samples:
 - Matheson et al (2001): mostly spectra, very little photometry
 - Richardson et al. (2006): only published LC, pre-CCD SNe
 - Drout et al (2011): large dataset, but only V&R photometry

NEARBY SN CFA FOLLOW-UP (SINCE 1994, ESP. >2003)

- Optical Spectroscopy: FAST on FLWO 1.5m
 - 3–4 spectra/night, ~300 spectra/year
 - Reduced in the same manner
- Optical Photometry (UBVr'i'): FLWO 1.2m
 - 3-4 SN/night, templates, standard star obs
- NIR Photometry (*JHK*₃): PAIRITEL 1.3m
 - 3-4 SN/night
- Late-time (>3 months) Spectra:
 - MMT (AZ), Magellan (Chile), Gemini-North (see also Modjaz et al. 2008)

NEARBY SN CFA FOLLOW-UP (SINCE 1994, ESP. >2003)

EXAMPLE: EXTENSIVE LC & SPECTRA OF CFA SNE

Spectroscopic Sample: 1994-2009 (including a few published SNe):

- 39 SNe Ib & IIb - 30 SNe Ic & Ic-bl - 1 GRB-SN 06aj (Modjaz+06)

- 2 peculiar SNe

72 SNe IIb, Ib, Ic, Ic-bl:

Tripled world-supply of well-observed Stripped SNe

PAPER I: RELEASE OF EXTENSIVE SPECTROSCOPIC DATA

- SN relatively nearby (<cz>~ 4100 km/s)
- 43 of 72 SNe have measured date of max

TYPICAL SN IC VS SN IC-BL

Line widths: SN Ic @ +0d: ~7000-15,000 km/s

SN Ic-bl @+0d: ~15,000-30,000 km/s (but beware blending!)

TYPICAL SN IC VS SN IC-BL

Average Spectra

SN Ic convolved with ~15,000 km/s Gaussian + blueshifted by 3000 km/s =~ SN Ic-bl

Relative flux + constant

SYSTEMATIC ANALYSIS: E.G., ABSORPTION VEL

SNe Ic-bl/GRBs: largest velocities, followed by SNe Ic-bl and then SNe Ic (see also Mazzali+06, Pian+06, Mazzali's talk, Chornock+10) Caveat: blending for SNe Ic-bl!

HUNT FOR PROGENITORS Possible SN Ib/c & SN-GRB progenitors:

(Credit: Hubble/NASA)

Single massive (> 30 M_o) Wolf-Rayet stars with metallicity-dependent winds (or eruptions) (e.g., Woosley et al. 1995, Maeder & Conti 2004, but see Smith & Owocki)

(Credit: ArtistNASA)

He stars (8-40 M_☉) in binaries, runaway binaries (e.g., Podsiadlowski et al. 2004)

Direct Study (but either not conclusive & or few SNe):

- Pre-Explosion images: no progenitor detections (Smartt09, Van Dyk talk)
- Shock-breakout for a few SNe (Soderberg +08, Modjaz+09, Arcavi+11, Corsi+11) and 1 SN-GRB (Campana et al 2006)

Statistical Study:

Differentiate between GRB, SN Ib and SN Ic progenitor models via - Environments & their Metallicities

[- SN Rates (Smartt+, Smith+)]

DEFINITION OF "METALLICITY"

- Metallicity = Oxygen abundance in HII regions from emission lines [12+log₁₀(O/H)]
- Why Oxygen?
 - Most abundant metal in the universe
 - Weakly depleted onto grains
 - Dominant coolant (besides H): strong nebular lines in optical
 - Well-established diagnostics, e.g., Kewley & Dopita (2002, KD02), Pettini & Pagel (2004, PP04), McGaugh 1991 (M91)
- From HII regions <u>at SN site</u> by massive young stars
 = natal metallicity of core-collapse SN progenitor

RECIPE FOR MEASURING "Z": STATE OF THE ÅRT

- Spectra at <u>position</u> of SN or GRB (b/c of Z gradients): probe natal Z
- SNe with secure ID (many spectra)
- Large λ range: robust & uniform Z estimate, correct for reddening
- Remove stellar absorption in spectrum when necessary
- Uncertainty budget
- In different and independent oxygen abundance diagnostics (e.g., Kewley & Ellison 2008)

A large-aperture telescope (Keck, VLT, Gemini ...)

RECIPE FOR MEASURING "Z": STATE OF THE ÅRT

- Spectra at <u>position</u> of SN or GRB (b/c of Z gradients): probe natal Z
- SNe with secure ID (many spectra)
- Large λ range: robust & uniform Z estimate, correct for reddening
- Remove stellar absorption in spectrum when necessary
- Uncertainty budget
- In different and independent oxygen abundance diagnostics (e.g., Kewley & Ellison 2008)
- Also include SNe from galaxyunbiased surveys: mitigate selection effects (e.g., Modjaz et al. 2008, Young et al. 2008)

Kewley & Ellison (2008)

METALLICITIES AT THE SITES OF SN IC-BL WITH AND WITHOUT GRBS

DO GRBS TRACE STAR FORMATION?

Kocevski & West (2011): SFR weighting <u>not enough</u> to explain GRB host M-Z's offset to low Z - (see also John Graham's talk)

<u>Reason(s):</u>

- Low Z GRB progenitor? (Yoon & Langer 05, Woosley & Heger 06)

- Dust? (Fynbo +10, Perley+10)

- M-Z-SSFR? (Mannucci +10, Koveski & West 11)

Test with SN crop from new survey: PTF: ~70 SNe Ib/c

DO GRBS TRACE STAR FORMATION?

Kocevski & West (2011): SFR weighting not enough to explain GRB host M-Z's offset to low Z - (see also John Graham's talk)

<u>Reason(s):</u>

- Low Z GRB progenitor? (Yoon & Langer 05, Woosley & Heger 06)

- Dust? (Fynbo +10, Perley+10)

- M-Z-SSFR? (Mannucci +10, Koveski & West 11)

Test with SN crop from new survey: PTF: ~70 SNe Ib/c

HUNT FOR SN IB/C PROGENITORS: SITES OF SN IC ARE MORE METAL-RICH THAN THOSE OF SN IB

more metal-rich

Meta-Analysis:

Modjaz+ 11 & Anderson +10 & Leloudas +11 @SN position: <u>SN Ic's sites are still more metal-</u> <u>rich than SN Ib's</u> (see also Arcavi et al. 2010, Kelly & Kirshner 2011, astro-ph)

Implications: - consistent with WR scenario

-<u>Locally measured</u> Z different from SDSS prediction & nuclear values

- SN sub-types are physically motivated: different progenitors for different SN types - not just viewing effects or mixing

OXYGEN ABUNDANCE @ SN SITES

 $Z_{\text{Ic-bl&GRB}} < Z_{\text{Ic-bl}} \sim Z_{\text{Ib}} < Z_{\text{Ic}}$

Consistent with Arcavi+10, in prep

What about Z_{IIb} ? ->Kelly & Modjaz (in

more metal-rich

CONCLUSIONS: SNE IB/C WITH AND WITHOUT GRBS

- Growing amount of comprehensive data -> quantify diversity & systematic study
- CfA Spectroscopic (& photometric) dataset for 72 Stripped SNe is densely time-sampled, homogeneous & extensive
 - Average spectra: SNe Ic and SNe Ic-bl different
 - SN1994I (classical SN Ic) is not typical for a SN Ic
 - Velocities: $v_{SN-GRB} > v_{SNIc-bl} > v_{SNIc}$
- Environmental & metallicity studies are a rapidly developing field
 - Meta-analysis: $Z_{SNIc} > Z_{SNIb}$ is robust, also
 - $Z_{Ic-bl\&GRB} < Z_{Ic-bl} \sim < Z_{Ib} < Z_{Ic}$ (though interpretation debated for GRB-SN)
 - Need local Z measurements vs. nuclear measurements