Unveiling the Fundamental Properties of Gamma-Ray Burst Host galaxies Sandra Savaglio (MPE Garching)

Stéphane Basa (OAMP, Marseille) Stefano Berta (MPE, Garching) Jochen Greiner (MPE, Garching) Karl Glazebrook (Swinburne Melbourne) Leslie Hunt (INAF Florence) Sylvio Klose (TLS Tautenburg) Thomas Krühler (Dark Centre, Copenhagen) Damien Le Borgne (IAP, Paris)

Emeric Le Floc'h *(CEA-Saclay)* Sheila McBreen *(U. College Dublin)* Michal Michałowski *(Edinburgh Uni.)* Eliana Palazzi *(INAF–IASF Bologna)* Arne Rau *(MPE, Garching)* Andrea Rossi *(TLS Tautenburg)* Patricia Schady *(MPE, Garching)*

> Death of Massive stars: supernovae's Gamma-Ray Bursts

> > IAU Symposium 279, Nikko, March, 2012

GRB host galaxies

Core-collapse supernova host galaxies z < 1.2

GRB host galaxies z < 1.2

GRB host galaxies at z < 1.5 generally are:

- small
- metal and dust poor
- star forming

What about z > 1.5 GRB hosts?

Main changes in the history of the universe:

- SFR density
- stellar mass
- galaxy merger rate
- galaxy size

Cosmic star formation and merger rate

The last 10 Gyr

SFRD

Major merger rate

Hayes, Schaerer & Östlin (2010)

Bluck et al. (2011)

Cosmic star formation rate for different masses

Madau plot per stellar-mass bin

Galaxy stellar mass

Cosmic stellar mass assembly

Total stellar mass redshift evolution

Sobral et al. (2012)

Cosmic chemical evolution

Mass-metallicity relation

Galaxy stellar mass

Tremonti et al. (2004) Mannucci et al. (2010) (see Campisi et al. 2011; Niino 2011 for FMZ of GRBHs)

Savaglio, Glazebrook, Le Borgne, et al. (2005) (see also Erb et al. '06, Maiolino et al. '08)

Cosmic chemical evolution

Levesque et al. (2010)

Krühler et al. (2012)

Savaglio (2006) Prochaska et al. (2007) Fynbo et al. (2008) Rau, Savaglio, Krühler, Afonso, Greiner et al. (2010) Savaglio, Rau, Greiner, Krühler et al. (2012) Based on modeling in Savaglio et al. (2005)

Pontzen et al. (2010)

The highest and lowest metallicity GRB-DLAs

Is there a typical GRB host?

Is there a typical GRB host?

	Local dwarf galaxy	Low-z GRB host	High-z GRB host
	SBS 0335-052	GRB 980425 host	GRB 090323 host
Z	0.0125	0.0085	3.57
Мв	-16.9	-18.6	-24.9
Size	6×5 kpc ²	30×20 kpc ²	< 6 kpc
log (Z/Z⊙)	-1.4	-0.5	+0.25
<i>M</i> (HI)	~ 8×10 ⁸ M⊚	—	—
M(stars)	~ 4×10 ⁷ M⊚	~ 2×10⁰ M⊚	~ 6×10¹º M⊚
SFR	0.5 M _☉ yr ^{_1}	0.2 M _☉ yr ^{_1}	>6 M⊚ yr⁻¹
SSFR	12.5 Gyr-1	0.1 Gyr ⁻¹	> 0.1 Gyr-1
N(HI)	7.0×10 ²¹ cm ⁻²	—	5.6×10 ²⁰ cm ⁻²
Age	< 400 Myr	~ 900 Myr	< 500 Myr

Double absorbers in high-z GRB afterglows

The interacting-galaxies idea

GRB 090426 z = 2.609

host companion 10" N

 $M_{\star} = 6.5 \times 10^{10} \text{ M}_{\odot}$ log $N_{\text{HI}} = 18.7 \pm 0.1$ SFR ~ 1.7 M_{\odot} yr⁻¹

Thöne et al. (2011) Levesque et al. (2010)

The interacting-galaxies idea

GRB host colors

Savaglio, Glazebrook, Le Borgne et al. (in prep.) Savaglio, Glazebrook, Le Borgne (2009) Krühler, Greiner, Schady, Savaglio et al. (2011)

 $z_{phot} = 2.2$ R - K (AB) = 4.7 $24 \ \mu m/R$ -band flux ~ 1000 SFR ~ 120 M_{\odot} yr⁻¹ $M_{\star} = 3 \times 10^{11} M_{\odot}$

Hunt, Palazzi, Rossi, Savaglio, Cresci, Klose, Michałowski, Pian (2011)

GRB host galaxies

Levan et al. (2006) Berger et al. (2007) Hashimoto et al. (2010) Hunt, Palazzi, Rossi, Savaglio, Cresci, Klose, Michałowski, Pian (2011)

GRB host SED opt-radio

 $M_{\star} = 2 \times 10^9 \text{ M}_{\odot}$ $M_{\text{dust}} = 3 \times 10^8 \text{ M}_{\odot}$ $\text{SFR}_{\text{opt}} \sim 10 \text{ M}_{\odot} \text{ yr}^{-1}$ $\text{SFR}_{\text{radio}} \sim 150 \text{ M}_{\odot} \text{ yr}^{-1}$

Star Formation Rate Density of the Universe

Conclusions / Future

1 Are all GRB hosts small ?

2 What is their nature at z > 2 ?

3 Are high-z GRBs triggered by mergers ?

4 Long-wavelength investigations can answer