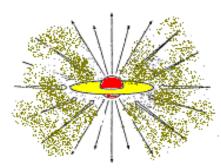
Death of Massive Stars Mar. 15 2012 NIKKO

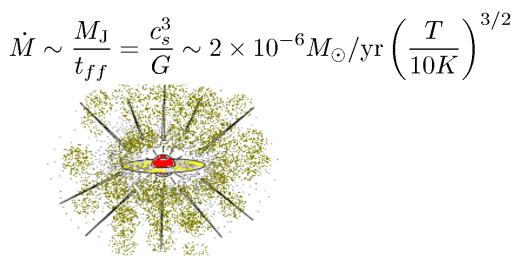
Star formation in the early universe

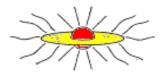
Kazu Omukai (Kyoto U.)

Outline


- Introduction : massive star formation in the local universe
- First stars: massive but not very massive
- Effect of metal-enrichment: pop III-II transition
- Super-massive stars ?: where and how

low-mass star formation


Shu, Adams & Lizano (1987)


A. Dense cores form within molecular clouds.

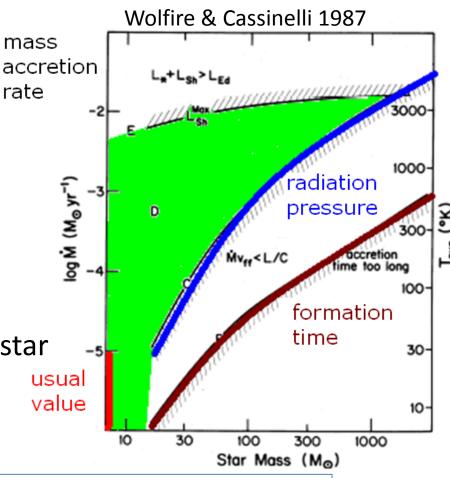
C. A stellar wind breaks out, creating a bipolar flow

B. A protostar forms at the center of a core, growing in mass by accretion of ambient matter.

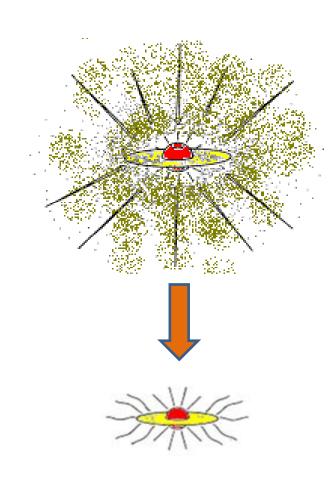
D. The infall terminates, revealing a newly formed star with a disk.

Obstacles in Forming Massive Stars

1. Formation time problem accr rate Time needed to form a massive star


$$t_{acc} \equiv \frac{M_*}{\dot{M}_*}$$

exceeds the stellar life time.


2. Radiation barrier problem

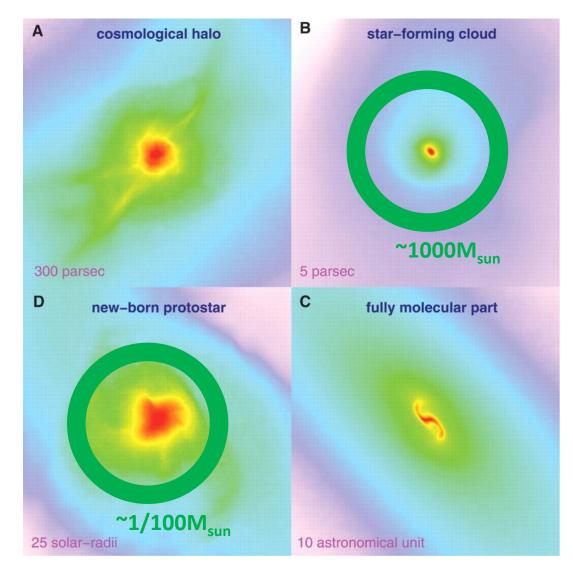
Radiation pressure (on dust) by the star becomes too high for the matter usu to be accreted.

Rapid and non-spherical accretion is needed for massive star formation in local universe.

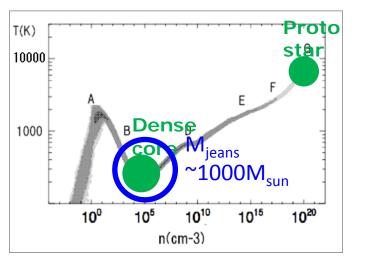
Metallicity and Massive Stars

\blacktriangleright Low-metallicity environment (Z<<Z_{\odot})

lower dust amount
 ⇒ lower radiation pressure
 higher temperature
 ⇒ higher accretion rate

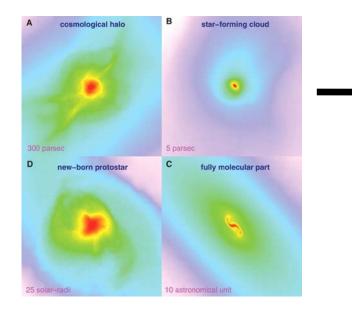

$$\dot{M} \sim \frac{M_{\rm J}}{t_{ff}} = \frac{c_s^3}{G} \sim 2 \times 10^{-6} M_{\odot} / {\rm yr} \left(\frac{T}{10K}\right)^{3/2}$$

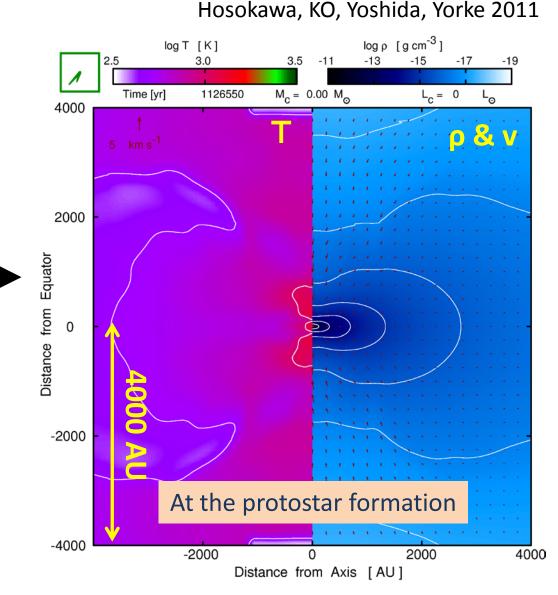
Both effects weakens the feedback


➔ More massive stars

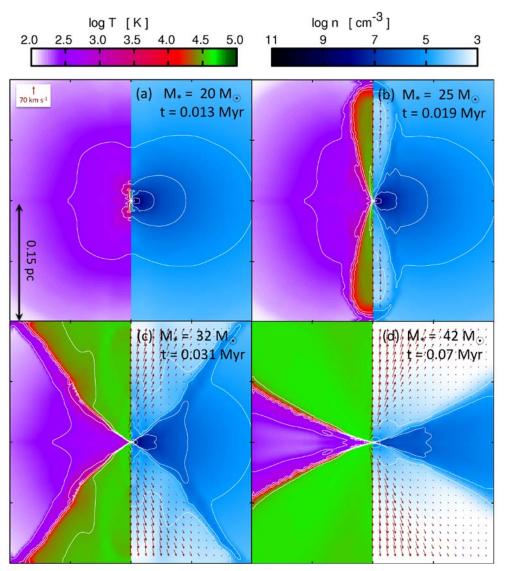
1. Massive stars: case of the first stars

First Star Formation: early phase


Yoshida, KO, Hernquist 2008



•At ~ 10^4 cm⁻³, dense core of ~ $1000M_{sun}$ forms by H₂ cooling •Inside of it, a protostar forms at ~ 10^{21} cm⁻³ with initial mass of ~ $10^{-2}M_{sun}$ •The protostar grows with high accretion rate ~ $10^{-3}M_{sun}/yr$

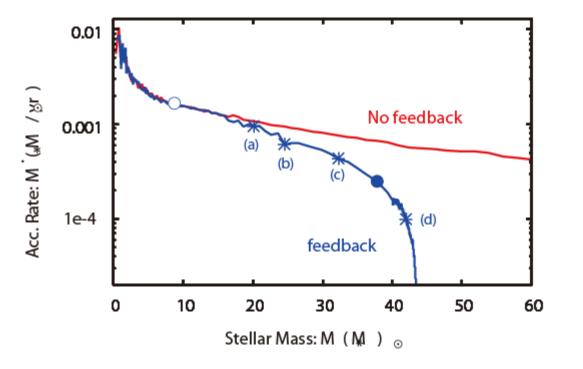

Accretion evolution of the first star

Initial condition from the cosmological simulation
2D radiative-chemical hydro + protostellar evolution

First Star Formation: late phase

Hosokawa, KO, Yoshida, Yorke 2011

2D Radiation Hydro + protostellar evolution


HII regionexpands rapidly in the

polar directions

 becomes wider and expels the gas (except in the shadow of the disk)

Disk photo-evaporation gas escapes in the polar directions with velocity of a few x 10 km/s

Accretion rate

 > accretion rate is drastically reduced by protostellar UV feedback.
 > the accretion terminates at 43 M_☉

Massive (but not very massive) star forms - ends its life as the core-collapse SN, instead of PISN Low-mass stars: pop II-III transition by metal enrichment

Pop III-II transition

✓ First stars (Pop III stars) theoretically predicted to be massive(~ several 10M_{sun}) ✓ Stars in the solar neighborhood (Pop I) typically low-mass(0.1-1M_{sun}) Low-mass Pop II stars exist in the halo.

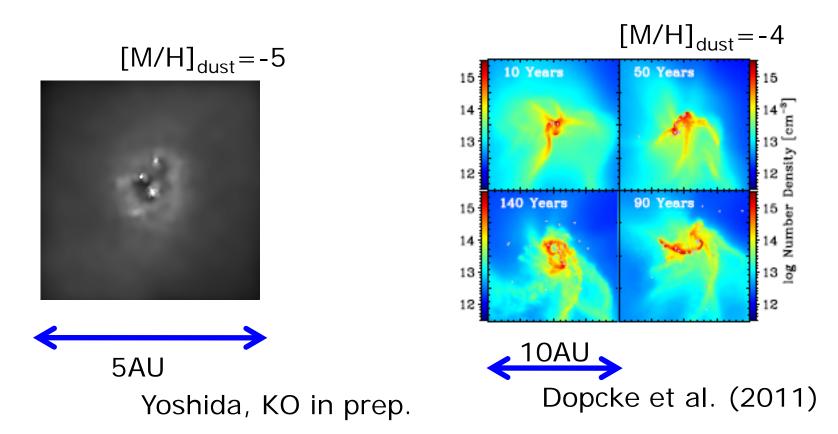
•transition of characteristic stellar mass in the early universe from massive to low-mass (**Pop III-II transition**)

•This transition is probably caused by accumulation of a certain amount of metals and dusts in ISM (**Critical metallicity**)

thermal evolution of low-metallicity clouds

1) Cooling by dust thermal emission: [M/H] > -52) H₂ formation on dust : [M/H] > -4

3) Cooling by fine-str. lines (C and O): [M/H] > -3


10⁶M_{sun} 10⁴M_{sun} 10²M_{sun} 1M_{sun} 10⁻²M_{sun} 10000 1000 dustinduced line induced 100 Z=0[M/H]=-6 10 . 10⁻⁴M_{sun} 1 Low-mass fragments 20 form by dust cooling

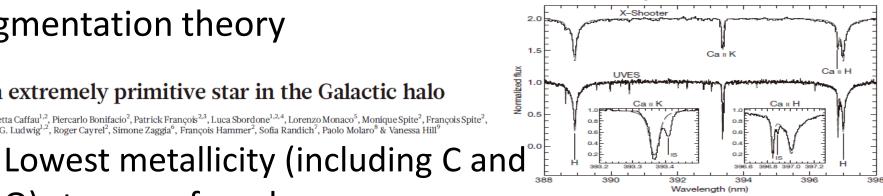
[M/H] := log₁₀(Z/Z_{sun})

1D hydro (spherical)
dust/metal ratio same as local ISM
all the important cooling processes inclluded
reduced H, D, C, O chemical network

KO et al. 2005; KO, Hosokawa, Yoshida 2010

Dust-induced fragmentation

Rapid cooling by dust at high density (n~10¹⁴cm⁻³) leads to core fragmentation. M_{frag} ~ 0.1 M_{sun}
With slight dust enrichment, characteristic stellar mass shifts to low-mass

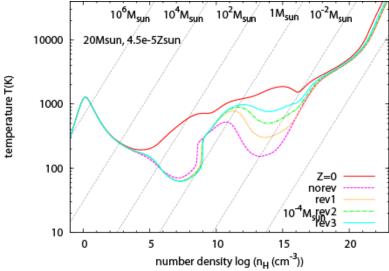

Recent discovery in support of the dust fragmentation theory 2.0

An extremely primitive star in the Galactic halo

O) star ever found

Elisabetta Caffau^{1,2}, Piercarlo Bonifacio², Patrick François^{2,3}, Luca Sbordone^{1,2,4}, Lorenzo Monaco⁵, Monique Spite², François Spite², Hans-G. Ludwig^{1,2}, Roger Cayrel², Simone Zaggia⁶, François Hammer², Sofia Randich⁷, Paolo Molaro⁸ & Vanessa Hill⁹

Observed spectra of SDSS J102915+172927



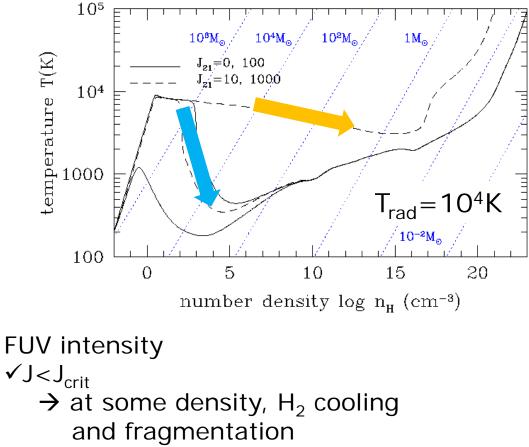
Caffau + 2011

4.5x10⁻⁵Z_{sun} Fine-str. Line theory fails to explain its formation.

Elemen	nt A(X), 3D	[X/H], 3D	[X/Fe], 3D	[X/H], 1D	Number of lines	A(X) ₀
С	≤4.2	≤-4.3	≤+0.7	≤-3.8	G band	8.50
N	≤3.1	≤-4.8	≤+0.2	≤-4.1	NH band	7.86
Mgı	2.95	-4.59 ± 0.10	+0.40	-4.68 ± 0.08	4	7.54
Sii	3.25	-4.27 ± 0.10	+0.72	-4.27 ± 0.10	1	7.52
Cai	1.53	-4.80 ± 0.10	+0.19	-4.72 ± 0.10	1	6.33
Call	1.48	-4.85 ± 0.11	+0.14	-4.71 ± 0.11	3	6.33
Tiu	0.14	-4.76 ± 0.11	+0.23	-4.75 ± 0.11	6	4.90
Fei	2.53	-4.99 ± 0.12	+0.00	-4.73 ± 0.13	44	7.52
Nit	1.35	-4.88 ± 0.11	+0.11	-4.55 ± 0.14	10	6.23
Srii	≤-2.28	≤-5.2	≤-0.21	≤-5.1	1	2.92

- in CDCC 110201E | 172027

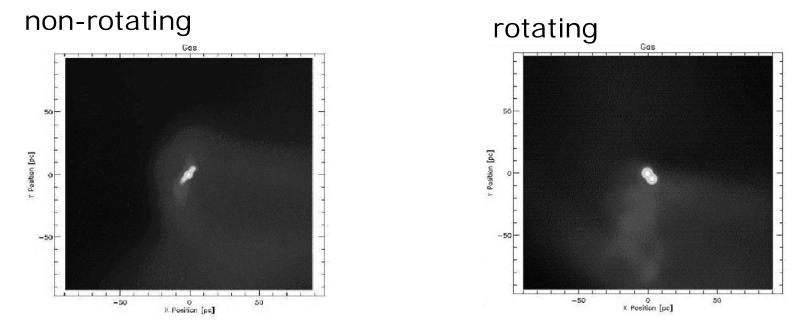
15


3. Supermassive stars: where and how ?

Requirements for SMS formation by direct collapse

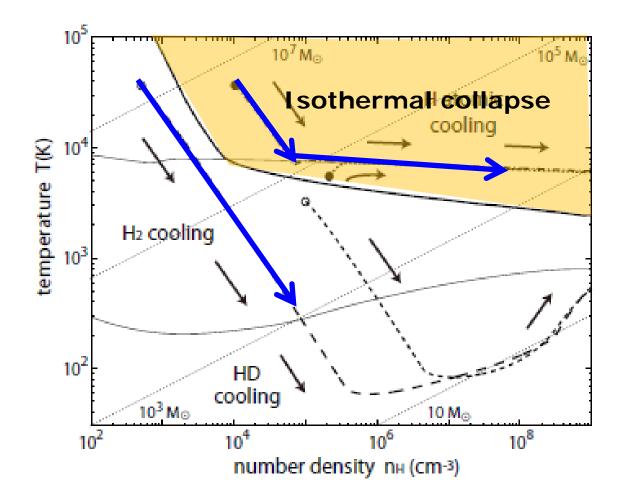
- Fragmentation suppressed
 - Rapid cooling → fragmentation
 Without such cooling → no fragmentation.
 - H₂ cooling is suppressed by FUV photodissociation
- Formation timescale shorter than lifetime
 - High accretion rate
 - $>M_*/t_*~10^5M_{sun}/2x10^6yr~0.05M_{sun}/yr$
 - If no H2, T~10⁴K
 dM*/dt ~c_s³/G~ 0.06M_{sun}/yr (T/10⁴K)^{3/2}

primordial gas in strong FUV field



✓J>J_{crit}

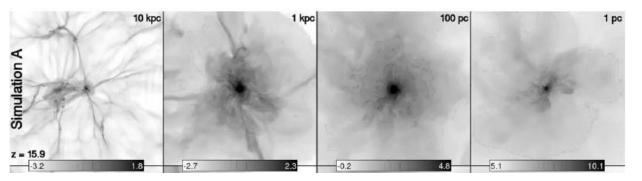
 \rightarrow isothermal collapse continues


SMS formation by the isothermal collapse

Bromm & Loeb 2003

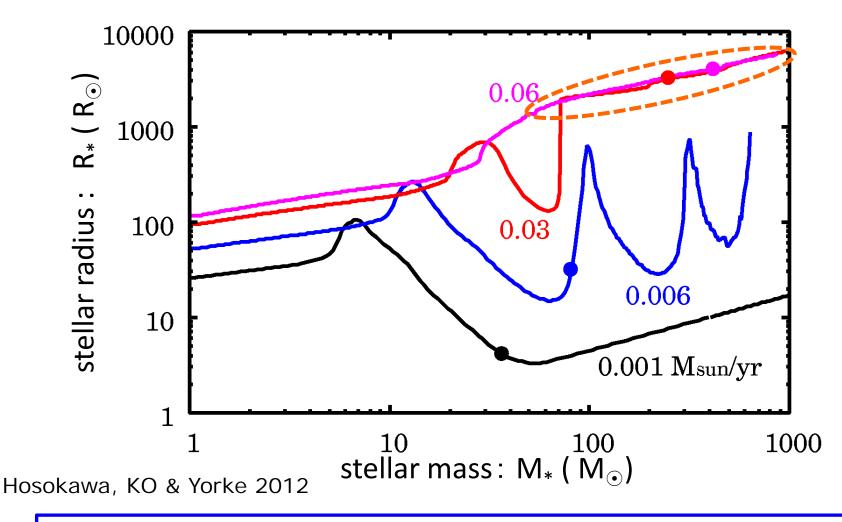
✓M~10⁸M_{sun} halo virializing at z~10 (2σ over-density) with strong FUV J₂₁~4000
 ✓Fragmentation is inefficient
 →direct collapse to 10⁶M_{sun} supermassive star

Alternative: high-density shock in primordial gas

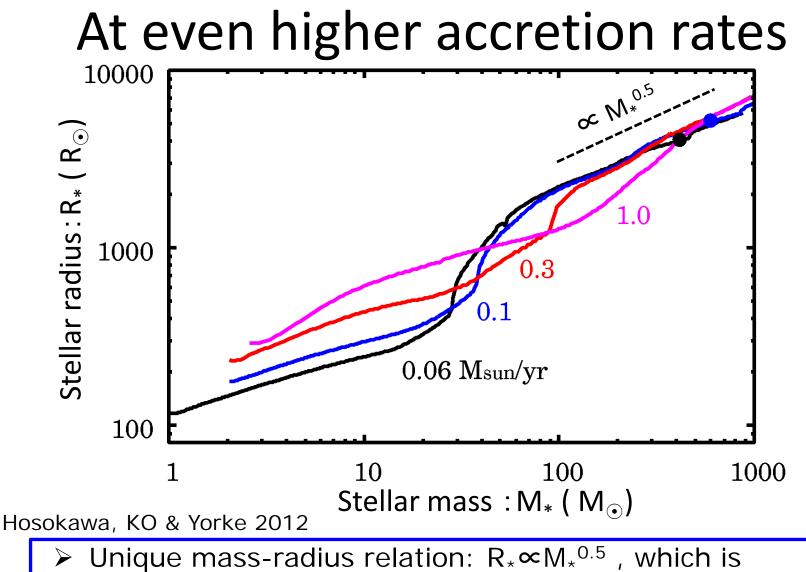


- shocks at >10³⁻⁴/cc, with> several 10³K
 - H₂ collisionally dissociated
 - Fragments at 8000K with >~10⁵M_{sun}
 - Isothermal collapse thereafter

Inayoshi & KO 2012

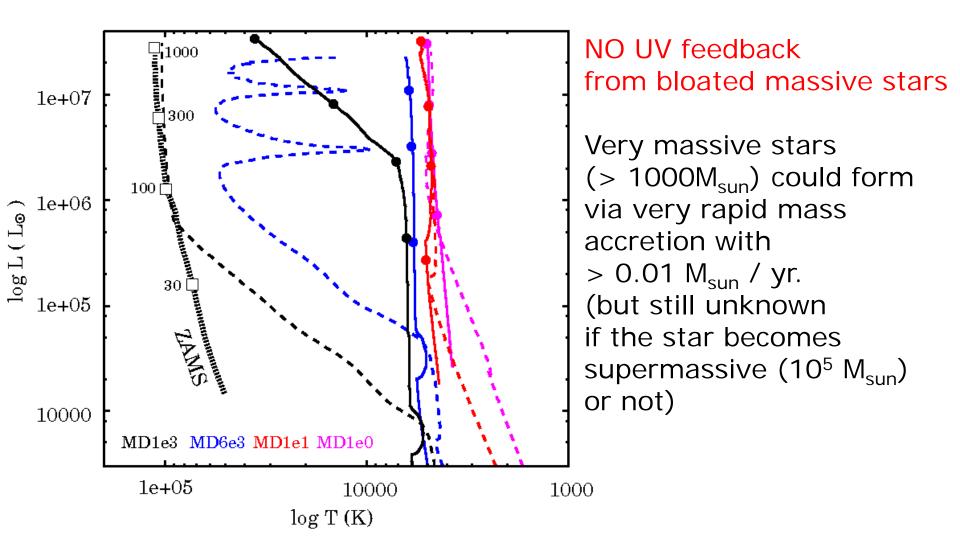

Possible sites of high-density shocks

Cold-accretion-flow shock in the central ~10pc region of the first galaxy (Wise, Turk & Abel 2008)



 Galaxy merger driven inflow (Mayer et al. 2010)
 ← probably metal-rich

Protostars with very rapid accretion



New evolutionary branch with higher rates of > 0.01 M_☉/yr
 The star continues to expand, never contracting to the ZAMS

- independent of mass accretion rates
- ➤ 7000R_{sun} ≒ 300 AU @ 1000 M_{sun} : "supergiant" protostars

Evolution on the HR diagram

SUMMARY (1/2)

First stars: massive (but not very massive)

- dense core of 10³M_{sun} forms at 10⁴cm⁻³ by the H₂ cooling
- Protostellar radiative feedback sets the final stellar mass at ~40Msun

Pop III-II transition by dust cooling

- Dust cooling causes a sudden temperature drop at high density where M_{Jeans}~0.1M_{sun}, which induces low-mass fragmentation.
- The critical metallicity for dust-induced fragmentation is [Z/H]_{cr}~-5

SUMMARY (2/2)

Supermassive star formation

- Photodissociation/Collisional dissociation in dense, shocks suppresses H₂ cooling, leading to SMS formation via isothermal collapse at 8000K.
- Accretion of SMS can continue at least ~10³M_{sun}, probably more.
 →Hopefully evolve to a SMBH seed.