Gamma-Ray Bursts as Cosmological Probes

戸谷 友則 (TOTANI, Tomonori)

2012 Mar. 15, Nikko, Japan IAU Symposium 279 "Death of Massive Stars: Supernovae and Gamma-Ray Bursts"

Talk Plan

- GRB as a probe of cosmic star formation history
- + GRB as a probe of cosmic reionization
- + GRB as a standard candle to study cosmic expansion
- GRB as a probe of cosmic optical/infrared background radiation

 * "cosmology" including galaxy formation, high-z universe, in addition to "core" cosmology (cosmological parameters, dark energy, etc.)

GRBs as a Probe of Cosmic Star Formation History

- We expect GRB rate ∝ SFR, making it a SFR indicator (Totani '97; Wijers+'08)
- * strength:
 - reaches to very high-redshift
 - no extinction by dust (for gammarays)
 - no limit about host galaxy luminosity
- weakness:
 - complicated efficiency for detection and redshift measurements
 - + may be a biased SF indicator
 - + e.g., metallicity / host galaxy mass
 - can be a probe of GRB progenitor nature, if CSFH is given

Kneiske+'10

GRB rate history different from CSFH?

- various papers found that (long) GRB rate is relatively higher than SFR at high-z
 - + RGRB/SFR $\propto (1+z)^{\alpha}$, $\alpha \sim 1$
 - e.g., Daigne+'06; Guetta+'07; Le+'07; Salvaterra+'07; Kistler+'08,'09; Li '08; Salvaterra+'09; Campisi+'10; Qin+'10; Wanderman+'10

* some other selection effects?

Sampling Bias of GRB redshifts

- recent more complete sample indicates that the primary reason of no-afterglow GRBs ("dark GRBs") is large extinction by dust
 - Greiner+'10; Kruhler+'10
 - no low-Z preference?
 - Z dispersion within a host? (Niino '11, see also poster #41
- the past sample with known redshifts is most likely biased to low-mass, low-metallicity galaxies
- * the latest sample by GROND is consistent with the simple picture of $R_{GRB} \propto SFR$
 - + Elliott+'12
- * secure conclusion: LGRB rate is roughly consistent with simple relation of $R_{GRB} \propto SFR$
 - sampling bias is the crucial issue to derive stronger conclusions from GRB rate study

Hashimoto+'10

short GRBs vs. CSFH

- In the NS-NS(BH) merger scenario, delay time distribution (DTD) of GRB events from star formation should be ∝t_D⁻¹
 - + $t_{GW} \propto a^4$ (a: initial binary separation)
 - only weakly depends on separation distribution (TT '97)
- Is SGRB rate history consistent with CSFH convolved with DTD?
 - an interesting study if we have enough number of SGRBs with z
- + A similar study: type Ia SN rate
 - rate studies now converges to SN Ia DTD of t_D⁻¹ (TT+'08; ...)
 - preferring double-degenerate (WD-WD) progenitor scenario

Cosmic Reionization

- The Universe (hydrogen) became neutral at z~1100
 - + the cosmic recombination
- Hydrogen in IGM today is highly ionized
 - the Gunn-Peterson Test
- The universe must have been reionized at around z~10
 - most likely by UV photons by first stars
 - when? how? important benchmark to understand galaxy formation

Djorgovski+

The Reionization Probes

- + quasar Gunn-Peterson test:
 - gives only lower limit at z > 6
 - proximity effect
- Cosmic microwave background polarization:
 - + only integrated information over z
- + Ly α emitter luminosity function:
 - highly model dependent

GRB as a Reionization Probe

+ Strengths:

- GRBs detectable at z>>6
- probes more normal (less biased)
 region in the universe than quasars
 - GRBs detectable even in small dwarf galaxies
 - No proximity effect
- simple power-law spectrum
 - damping wing analysis to precisely measure x_{HI} (=n_{HI}/n_H)

GRB 050904@z=6.3, TT+ '06

GRB as a Reionization Probe (2)

+ Weakness:

- Degeneracy between damped Ly α (DLA) of host galaxies and IGM damping wing
 - can be broken by metal absorption lines
 - we need low N_{HI} host galaxy to measure x_{HI} accurately
- + event rate not so high
 - GRB 050904 is still the only one useful constraint on reionization by GRBs since 2005!
 - * x_{HI} < 0.17 (68%C.L) or 0.6 (95%C.L.) by fitting

GRB 050904@z=6.3, TT+ '06

GRB 080913 @ z~6.7

(Greiner+'09) 2-3 hrs, z'~24.5(AB), 2400 s exp. damping wing detected, but difficult to discriminate DLA or IGM

c.f. GRB 050904, z~6.3 3.4 days, z'=23.7(AB), 4 hr exp. GRB 090423 @ z~8.2

Tanvir+'09, ~20 hr, J~20.8 Only upper bound on N_{HI} (=no detection of damping wing)

What do we need to increase the rate of GRBs useful for reionization?

- + GRB rate study indicate that >1% of GRBs are at z>6
 - + e.g. Elliott+'12
- Current 8m telescopes are not sufficient to measure the damping wing for typical GRB luminosities
 - + GRB 050904 was exceptionally bright!
- + We need more sensitive NIR spectrograph
 - + LGS-AO by 8m telescopes
 - + 30m-class telescopes / JWST

30m/JWST

30m telescope sensitivity vs. GRBs

(original figure from Greiner+'09)

remarks on reionization study by GRBs

- The number of reionization-constraining GRBs still very limited by
 - + insufficient sensitivity of NIR spectroscopy
 - + needs of low N_{HI} host galaxy
- NIR spectroscopic sensitivity will greatly improve in the near future
- Even a few measurements of IGM neutral fraction by GRBs would have significant impact on reionization community!

GRBs as the standard candle

- correlation between isotropic energy E_{iso} or luminosity L_{iso} and spectral peak energy E_{peak} has been known
 - Amati+'02; Yonetoku+'04
- This can be used as a standard candle, to make the Hubble diagram (distant vs. redshift), and then constrain cosmological parameters
 - + constraint on cosmic expansion history, like SN Ia
 - many papers already appeared to give such constraints
- However, GRB results have not yet had a strong impact on the general cosmology community
 - + why?
 - + a critical view from a "cosmologist" point of view

Frontiers of Precision Cosmology

- ACDM universe already established
- next interest: the origin of the acceleration of cosmic expansion
 - + dark energy (including the cosmological constant)?
 - modification of gravity theory on cosmological scale?
- Observational approach:
 - precise geometrical test to constrain the equation-of-state of dark energy (SN Ia, baryon acoustic oscillation, ...)
 - measurement of structure growth rate to test gravity theory

Geometrical Tests

- + supernova Ia (standard candle)
 - now sufficient statistics
 - systematics limited!
 - a lot of effort for "standardization" for the next-generation cosmology
- baryon acoustic oscillation (standard ruler)
 - perhaps the "cleanest" geometrical test
 - expensive, requires > 100k galaxy redshifts in wide area

Astier+'06

Eisenstein+'05

Measuring Structure Growth Rate: A Test of Gravity

- redshift space distortion (RSD) in galaxy redshift surveys
 - + distortion by peculiar velocities
 - RSD gives a measure of structure growth rate f [=d(ln δ)/d(ln a)]
 - + several measurements at z < 1
 - will soon extend to z > 1

2D correlation function in redshift space (Guzzo+'08)

 weak lensing experiments will also deliver growth rate measurements by wide field imaging surveys

Systematics of GRB standard candle

 The correlation (larger E_{iso} or L_{iso} for large E_{peak}) is in line with the selection effect about detecter energy band

fixed detector energy band

 it may not explain all the observed correlation, but should certainly affect the precise cosmological analysis!

SN Ia vs. GRB as standard candles

+ GRBs are fundamentally stochastic events!

remarks on GRBs as a standard candle

- The physical origin of the spectrum-energy(luminosity) correlation is a very interesting issue
- However, there are still many steps for GRBs as a standard candle to provide a result having a significant impact to the general cosmology community
- + Strength of GRB against SN Ia is reach to high-z
 - + but, note that the standard dark energy appears at $z \ll 1$

GRBs as a Probe of Cosmic Opt./IR Background

- intergalactic absorption of high-energy gamma-rays gives an important measure of opt/NIR backgroud, i.e., history of galaxy formation
- + current limits come from blazars (z < 1)
- GRBs provide alternative background source, which would extend even higher-z
 - may probe star formation activity in reionization era (S. Inoue+'10)
 - highest-z blazars are at z~2, even by the Cerenkov Telescope Array (Y. Inoue +'10)
 - event rate may not be so large (~0.1-1 event/yr, Kakuwa+'11)
 - + but may extend to z~4

Cerenkov Telescope Array