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Talk Plan

+ GRB as a probe of cosmic star formation history
+ GRB as a probe of cosmic reionization
+ GRB as a standard candle to study cosmic expansion

+ GRB as a probe of cosmic optical/infrared background
radiation

+ “cosmology” including galaxy formation, high-z universe, in
addition to “core” cosmology (cosmological parameters, dark
eI e



GRBs as a Probe of Cosmic Star Formation History

+ We expect GRB rate « SFR, making it a
SFR indicator (Totani ’97; Wijers+’08)
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+ weakness:

+ complicated efficiency for detection
and redshift measurements

+ may be a biased SF indicator
+ e.g., metallicity / host galaxy mass

+ can be a probe of GRB progenitor
nature, if CSFH is given
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GRB rate history different from CSFH?
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+ various papers found that (long) GRB
rate is relatively higher than SFR at

high-z
+ RGRB/SFR o« (1+2)%, a~1
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+ indicating low metallicity for GRBs? Butler+’10

+ some other selection effects?
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Sampling Bias of GRB redshifts

+ recent more complete sample indicates that the
primary reason of no-afterglow GRBs (“dark
GRBs”) is large extinction by dust

+ Greiner+’10; Kruhler+’10
+ no low-Z preference?

+ 7 dispersion within a host? (Niino ’11, see
also poster #41

+ the past sample with known redshifts is most
likely biased to low-mass, low-metallicity
galaxies

+ the latest sample by GROND is consistent with
the simple picture of Rgrs « SFR

= Rlloi=E42

+ secure conclusion: LGRB rate is roughly
consistent with simple relation of Rgrs « SFR

+ sampling bias is the crucial issue to derive
stronger conclusions from GRB rate study
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short GRBs vs. CSFH

+ In the NS-NS(BH) merger scenario, delay S s/ Obs. vs. DD Models
. . . . ~ Yungelson+'00
time distribution (DTD) of GRB events s | )
from star formation should be «tp! Tof !
+ tow «< a% (a: initial binary separation) g |
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+ Is SGRB rate history consistent with CSFH
convolved with DTD?

+ an interesting study if we have enough
number of SGRBs with z
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+ A similar study: type Ia SN rate
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+ rate studies now converges to SN Ia DTD
of tp'! (TT+°08; ...)

+ preferring double-degenerate (WD-WD)
progenitor scenario

SN Ia DTD [century ' (10! L K,@,o)—ll

0.01

Delay Time t,, [Gyr]

SN [a DTD, Totani+’08



Cosmic Relonization

What is the Reionization Era?

+ The Universe (hydrogen) became . A Schematic Outline of the Cosmic History
i m:nsmcealrse <-The Big Bang
neutral at z~1100 e Bana byeers) e unvers s
+ the cosmic recombination ~300 thousand | (8 ‘ <+ Thnrhene beuomes

The Dark Ages start

+ Hydrogen in IGM today is highly o a

1 1 begin to form
lOaned ~ 500 million Thg Reionization starts

+ the Gunn-Peterson Test

The Cosmic Renaissance

+ The universe must have been The Dark Ages end
reionized at around z~10

< Relonization complete,
the Universe becomes
transparent again

+ most likely by UV photons by

ﬁI'St StarS Galaxles evolve

+ when” how? important - 9 bision he Solar System forms
benchmark to understand
galaXy formatlon ~ 13 billion Today: Astronomers

figure it all out!
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The Relonization Probes

+ quasar Gunn-Peterson test:
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+ highly model dependent
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GRB as a Reionization Probe

+ Strengths:
+ GRBs detectable at z>>6 T

+ probes more normal (less biased)
region in the universe than quasars
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+ GRBs detectable even in small dwarf
galaxies
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+ simple power-law spectrum
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GRB as a Reilonization Probe (2)

+ Weakness:

+ Degeneracy between damped Ly a
(DLA) of host galaxies and IGM
damping wing
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+ can be broken by metal
absorption lines
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+ event rate not so high
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GRB 080913 @ z~6.7
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2-3 hrs, z2’~-24.5(AB), 2400 s exp.

damping wing detected, but difficult to

discriminate DLA or IGM c.f. GRB 050904, z~-6.3
3.4 days, z'=23.7(AB), 4 hr exp.



GRB 090423 @ z~8.2
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What do we need to increase the rate of GRBs
useful for reionization?

+ GRB rate study indicate that >1% of GRBs are at z>6
s=co Blliotr 12

+ Current 8m telescopes are not sufficient to measure the
damping wing for typical GRB luminosities

+ GRB 050904 was exceptionally bright!

+ We need more sensitive NIR spectrograph
+ LGS-AO by 8m telescopes
+ 30m-class telescopes / JWST



30m/JWST




30m telescope sensitivity vs. GRBSs

+ convert into R mag, z=1 6F .
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remarks on reionization study by GRBSs

+ The number of reionization-constraining GRBs still very
limited by

+ insuflicient sensitivity of NIR spectroscopy

+ needs of low N1 host galaxy

+ NIR spectroscopic sensitivity will greatly improve in the
near future

+ Even a few measurements of IGM neutral fraction by GRBS
would have significant impact on reionization community!



GRBs as the standard candle

+ correlation between isotropic energy Eiso or luminosity Liso
and spectral peak energy Epeak has been known

+ Amati+’02; Yonetoku+’04

+ This can be used as a standard candle, to make the Hubble
diagram (distant vs. redshift), and then constrain
cosmological parameters

+ constraint on cosmic expansion history, like SN Ia

+ many papers already appeared to give such constraints

+ However, GRB results have not yet had a strong impact on
the general cosmology community

+ why?

+ a critical view from a “cosmologist” point of view



Frontiers of Precision Cosmology

+ ACDM universe already established

+ next interest: the origin of the acceleration of cosmic
expansion

+ dark energy (including the cosmological constant)?

+ modification of gravity theory on cosmological scale?”

+ Observational approach:

+ precise geometrical test to constrain the equation-of-state of
dark energy (SN Ia, baryon acoustic oscillation, ...)

+ measurement of structure growth rate to test gravity theory



Geometrical Tests

+ supernova la (standard candle)
+ now sufficient statistics
+ systematics limited!

+ a lot of effort for “standardization”
for the next-generation cosmology

+ baryon acoustic oscillation (standard
ruler)

+ perhaps the “cleanest” geometrical
test

+ expensive, requires > 100k galaxy
redshifts in wide area
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Measuring Structure Growth Rate

+ redshift space distortion (RSD) in
galaxy redshift surveys

+ distortion by peculiar velocities

+ RSD gives a measure of

structure growth rate f
[=d(In 0 )/d(In a)]

+ several measurements at z < 1

+ will soon extend to z > 1

+ weak lensing experiments will also
deliver growth rate measurements
by wide field imaging surveys
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Systematics of GRB standard candle

+ The correlation (larger Eiso or Liso for large Epeak) is in line with
the selection effect about detecter energy band

high-z

flux limit
LOG(Eiso/10% erg)

low-7 LOG(E/1 keV)
low-z ﬁ high-z
fixed detector energy band

+ it may not explain all the observed correlation, but should
certainly affect the precise cosmological analysis!



My~ 5 log(h/65)

My~ 5 log(h/65)

SN Ia vs. GRB as standard candles

+ GRBs are fundamentally stochastic events!
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remarks on GRBs as a standard candle

+ The physical origin of the spectrum-energy(luminosity)
correlation is a very interesting issue

+ However, there are still many steps for GRBs as a standard
candle to provide a result having a significant impact to the
general cosmology community

+ Strength of GRB against SN Ia is reach to high-z

+ but, note that the standard dark energy appears at z <~1



GRBs as a Probe of Cosmic Opt./IR Background

+ intergalactic absorption of high-energy
gamma-rays gives an important measure of
opt/NIR backgroud, i.e., history of galaxy PR
formation rom et of Quasar

Observed spectrum

+ current limits come from blazars (z < 1)

: : i~ ()i)l'-lR
+ GRBs provide alternative background VB[~ | - RN
source, which would extend even higher-z . Backgroung ight |

+ may probe star formation activity in
reionization era (S. Inoue+’10)

+ highest-z blazars are at z~-2, even by the
Cerenkov Telescope Array (Y. Inoue
+’10)

+ event rate may not be so large (-0.1-1
event/yr, Kakuwa+’11)

+ but may extend to z~4

Cerenkov Telescope Array



