Asymmetry in Supernovae

AU Symposium 279, 16/Mar/2012

Keiichi Maeda IPMU, U. Tokyo

Asymmetry is common

Is asymmetry common in SNe? GRB, Collapser

CC, SASI

MacFadyen+99

Blondin+ 05

Wongwathanarat+ 10

Katake+ 04 Ia, turbulence

la, off-set

Roepke+ 05

KM+ 10

Outline

- Geometry diagnostics w/ late-time spectra.
- Explosion **geometry of SNe la**.
- Explosion geometry of SNe lb/c.

Geometry Diagnostics by Late-time Spectra

 Just simple... Doppler shift of homologously expanding & transparent ejecta. year

Late-time, optically thin emission lines

• Basic behavior independent of model details.

Geometry	λ@ flux max	Line profile w.r.t rest
Spherical	= Rest	Symmetric
Axi. Sym. + equ. Sym. ("bipolar", e.g., torus)	≠ Rest (View. Dir.)	Symmetric
Axi. Sym. w/o equ. sym (e.g., one-sided)	≠ Rest (View. Dir.)	Asymmetric

Center of Homologous expansion

Early Polarization – Late Spectra : Difference

- Early phase spectropolarimetry (Masaomi's Talk).
 - − Left vs. up in the same projection → Non-axisymmetry.
 - − Early phase → Relatively **outer** layers.
 - Probe the deviation from a bulk symmetry.
- Late-phase spectroscopy.
 - Near vs. far along the line-of-sight → Bulk geometry.
 - − Late-phase → Innermost regions.
 - Probe the typical/bulk geometry.

Spec. Pol.

Late-time Spec.

KM, Taubenberger, Sollerman, Mazzali, Leloudas, Nomoto, Motohara, 2010, ApJ, 708, 1703

Examples of Late-time [FeII] +[NiII] (5 SNe)

Emitted by Stable Fe & Ni (low ion + low T_{ex}) i.e., Stable Fe & Ni

are offset

Random clumps w.r.t. the center don't do this.

(Normal) SNe la

Motohora+ 06, Gerardy+ 07, Leloudas+ 09 SN 2003hv, optical – IR Black=obs, Red = model

HVG/LVG = High/Low Velocity Gradient

Geometry is not only geometry?

Speed of spectral evolution

Light curve time scale ~ luminosity Benetti+ 04, 05

- **not correlate** with the "luminosity".
- SN Ia **diverse** as standardized candles?
 - Related to the geometry? Viewing direction?

KM+, 2010, Nature, 466, 82 (w/ Folatelli, Sollerman, Nomoto, Leloudas, Tanaka, Mazzali) KM+, 2011, MNRAS, 413, 3075 (w/ Leloudas, Sollerman, Folatelli, Mazzali) Viewing direction as a source of diversities

Spectral Diversity

Color Diversity

Spectral evolution

Color @ maximum brightness

Now, SNe Ib/c

- SNe Ib/c are **best candidates** in CC SNe for the late-time Doppler shift diagnostics.
 - Enters into the nebula phase early.
 - Little transfer effect expected.
 - Maybe important in some IIb (Maurer+ 10).
 - Another phonomenological interpretation (Milisavljevic+ 10).
 - Expansion vel. high (no high res. required).
 - Connection to GRBs (various talks in this symp.).

Mazzali, Nomoto, Patat, KM, 2001, ApJ, 559, 1047

SN 1998bw (GRB980425)

• V(Fe) broader/faster than V(O). May indicate bipolar?

KM+, 2002, ApJ, 565, 305 (w/ Nomoto, Mazzali) KM, Nomoto, 2003, ApJ, 598, 1163 A bipolar interpretation

Mazzali, Kawabata, KM+, 2005, Science, 308, 1284 (w/ Nomoto, Pian, Tominaga, Gal-Yam) SN 2003jd – off-axis 1998bw-like?

Late-Time Spectra of (normal) SNe b/c

SNe Ib/c in late phases w/ Subaru/VLT.

Single peak + Double peaks

Not spherical symmetry.
Not many clumps (at most a few).
Not largely one-sided (≠ SNe Ia).
Bipolar (or torus) straightforward.

Other dataset

D4ao (Ib), t-191 d D4ao [Mg I D4ao O I

84L (Ib), t=430 d

04gt (Ic), t=166 d

Many Maryin with

06T (IIb), =108 d

05bf (Ib-p), t=216 d

94I (Ic), =120 d

5

1 1 1

10

addition

ՐԿՆՆ

Modjaz+08

Taubenberger+ 09 (w/ KM)

Degree of asym. in bipolar interpretation

Early-phase behaviors of 1998bw

KM, Mazzali, Nomoto 06, ApJ, 645, 1331

Tanaka, **KM**, Mazzali, Nomoto 07

- The model asymmetry > "normal" SNe lb/c.
- **Consistent with observed properties.** Multi-D rad. transfer (under various major simplifications).

Late-phase behaviors of 1998bw

KM, Mazzali, Nomoto 06, ApJ, 645, 1331 KM, Nomoto, Mazzali, Deng 06, ApJ, 640, 854

- The model asymmetry > "normal" SNe lb/c.
- Consistent with observed properties.
- The energy reduced by a factor of a few than 1D models.

Future directions for asymmetry business

- Got more data.
 - Improving Statistic does help.
 - More specific argument for a typical geometry.
 - Typical geometry different for different populations?
- Go to other wavelengths.
 - NIR/IR helped a lot for SN Ia 2003hv.
- Provide detailed predictions for various models.
 Realistic multi-D rad. transfer hard to tackle.

Update in Multi-D Transfer

→Works in 1-3D w/ MPI-openMP. An example: 1D, W7 (Ia) →Time-dependent. - Works in 2D w/

 \rightarrow A single model input, no more input parameter.

 \rightarrow ~ Million line transitions (LTE). c.f., Sedona (Kasen), ATIS (Kromer) Works in 2D w/
reasonable comp. time.
Investigating resources
for 3D.

Conclusions

- Late-time spectra probe typical/bulk geometry.
- SNe la are **asymmetric.**
 - One-sided.
 - Viewing direction = Various Diversities.
- SNe lb/c are **asymmetric.**
 - Not spherically symmetric.
 - A typical number of "clumps" at most a few.
 - No significant deviation from equ. Symmetry (so far).
 - **Bipolar** the most straightforward interpretation.
 - GRB-SN 1998bw is more asymmetric than norm.