Early cooling emission Itay Rabinak

With Eli Livne and Eli Waxman

16 March 2012

Ofek, Rabinak et al. 2010, ApJ, 724,1396 Rabinak & Waxman 2011, ApJ, 728, 63 Rabinak, Livne & Waxman 2011, arXiv:1108.5548

SB and early emission obs.

- High cadence wide field ground based surveys, wide field hard X-ray space monitoring, and some luck (SN2008D).
- Source: SB and cooling env. emission of the outer $10^{-3}M_{\odot}$.
- Infer R_* , surface composition, A_λ and E/M from the early emission.

Explosion phases

Breakout (BO): radiation from $\tau_{edge} = c/v$ escapes

Planar: $r \sim R_*$

Spherical: $R_* \ll r$

Wind interaction (?)

Early cooling emiss

The energy of the emission is set by hydrodynamics

Typical photon energy is set by diffusion/thermalization

Results: early emission (const. к)

• For $r \gg R_*$, for all $\rho_0(r)^1$:

 $\delta M_{\text{photo.}} / M \approx 10^{-2.5} \frac{(\sigma_T / m_p \kappa)^{0.8} E_{51}^{0.8}}{(M / M_{sun})^{1.6}} t_{\text{day}}^{1.6}; \quad \mathbf{R} = \mathbf{R}_{12} 10^{12} \text{ cm}$ $T_{\text{eff.}} \approx 10^{47} (\sigma_T / m_p \kappa)^{-0.2} R_{12}^{1/4})_{\text{day}}^{-1/2} \text{ eV};$ $L_{\text{bol}} \approx 10^{47} (\sigma_T / m_p \kappa)^{-0.8} \frac{E_{51}^{0.9} R_{12}}{(M / M_{sun})^{0.7}} \text{ erg s}^{-1};$ $f_T = T_{\text{therm.-depth}} / T_{\text{eff.}} \approx 1.2 (\kappa_{\text{abs.}} / \kappa_{\text{abs.OP}})^{-1/8};$

Measure *R* (from *T*), $/M(@ \delta M = 0.003 M_{\odot})$

¹ [Rabinak & Waxman 2011]

Analytic approx

– Н: const. к until $T \approx 0.5$ eV

 $X_{\rm He} = 0.7, X_{\rm CO} = 0.3$

- He: moderate κ decline 3eV > T > 1eV
- C/O (& heavier): steeper κ decline 3eV > T > 0.5eV

Inferring the extinction

- Extinction distorts T_{col} . Note: $R_* \propto T_{col}^4 \kappa^{-1}$
- Model predicted Obs. $f(\lambda; t) = \text{Const.} \times r^2(t) g_{\text{BB}} \left[\frac{hc}{\lambda T(t)} \right] e^{-\tau_{\lambda}}$
- Rescale Obs. $x = \lambda T(t)/T_0$ BB curve
- All obs. in λ , t fall on single BB up to extinction
- Recall: $T(R, \text{Comp.}; t), r\left(\frac{E}{M}; t\right)$

Example SN2008D

For the correct R & comp., scaling brings all $f_{\lambda}(t)$ to a universal form

Norm \rightarrow relative extinction

R & comp. \rightarrow relative extinction \rightarrow extinction curve \rightarrow E/M

SN2008D results

• SN2008D: R=10¹¹ cm

He with C/O

Relative extinction curve, E(B-V) = 0.6

 $E_{51}/(M/M_{\rm sun}) \approx 0.8$ (Assuming A_{λ})

Compare late spectroscopy^{1,3}: 🖌 Modjaz et al. 09 30 $0.8 < E_{51}/(M/M_{sun}) < 1.3$ $v_{\rm ph}, 10^3 {\rm km~sec}^-$ 30% C at 20,000 km/s Tanaka et al. 09 0.4 < E(B - V) < 0.8Progenitor models²: $0.9 < R/10^{11} \text{ cm} < 1.9$ Modjaz et al. 09 ¹ [Soderberg et al. (2008)] 10 2 **3 4** *t*. day 9 5 ² [Tanaka et al. (2009)] ³ [Mazzali et al. (2008)]

Early emission from Ia's: Compact progenitors

- Small progenitors $R_* < 3 \times 10^9 E_{51}^{-1} (M / 1.4 M_{sun})^{4/3} \text{ cm}$
- Radiation do not dominate pressure throughout ejecta.
- Strong drop in emission starts when diffusion sphere reaches layers where $p_{\rm gas}=p_{\rm rad}{}^1$

$$t_{\rm drop} = 1 \frac{E_{51}^{0.8} R_{8.5} (\sigma_T / m_p \kappa)^{0.5}}{(M / 1.4 M_{\rm sun})^{0.6}} \, \rm{hr}.$$

¹ [Rabinak, Livne & Waxman 2011]

<u>SN Ia DDT Simulations: profiles for $r \gg R_*$ </u>

- Modification of pre-deton. $\rho(r)$ has small effect on final profile
- 50 Deviation from radiation domination has large effect on $p(\tau)$ $L_{bol} \approx 4 \times 10^{39} \frac{E_{51}^{0.8} R_{8.5}^{0.8} t_{hr}^{0.01}}{(M/1.4M_{sun})^{0.7}} \operatorname{erg s}^{-1}; \quad \swarrow$ Analytic Model $T_{\rm eff} \approx 1.5 R_{8.5}^{0.2} t_{\rm hr}^{-1/3} {\rm eV};$ 10^{2} 10³ 10⁶ 10⁴ $\tau_{\rm es}$
 - Lower deflagration velocity higher luminosity $L \propto v^{-1}$

Direct upper limit for la progenitor R_{*}

- Upper limits on early emission set an upper limit to R_*
- Example la SN2011fe
 - $-R_* < 10^{10} \mathrm{cm}^1$

(detection $L_{\rm g} \approx 10^{40} {\rm erg \, s^{-1}}$)

 $- R_* < 10^9 \text{cm}^2$ → Degenerate

(non detection 7hr before detection)

- difficult to constrain radius below 3×10^9 cm.
- Example Ic PTF2010vgv³: $R_* < 10^{11}$ cm $_{1[}$
 - ¹ [Nugent+ 2011] ² [Bloom+ 2011] ³ [Corsi+ 2012]

<u>Summary</u>

- Analytic model was derived for early cooling emission: including κ(recomb.+lines) & EOS.
- CC SN : given obs. on a day time scale
 - Obtain R and outer comp. of progenitor (A_{λ} indep.)
 - Obtain relative extinction & E/M
 - SN2008D: $R_* \approx 10^{11}$ cm, He+C/O composition, $E_{B-V} = 0.6$.
- SN Ia : given obs. on an hour time scale
 - Constrain R_*
 - $R_* < 3 \times 10^9$ cm for SN2011fe
 - Indicating to DDT explosion.

<u>SN2011dh</u>

Pre-explosion image shows $R_* = 10^{13}$ cm. Problem¹: LC rising @2 days \rightarrow progenitor Solution (Bersten) : low mass extended envelope

Results: early emission (const. к)

• For $r \gg R_*$, for all $\rho_0(r)^1$:

 $\delta M_{\text{photo.}} / M \approx 10^{-2.5} \frac{(\sigma_T / m_p \kappa)^{0.8} E_{51}^{0.8}}{(M / M_{sun})^{1.6}} t_{\text{day}}^{1.6}; \quad \mathbf{R} = \mathbf{R}_{12} 10^{12} \text{ cm}$ $T_{\text{eff.}} \approx 1 (\sigma_T / m_p \kappa)^{-0.2} (R_{12}^{1/4})_{\text{day}}^{-1/2} \text{ eV};$ $L_{\text{bol}} \approx 10^{47} ((\sigma_T / m_p \kappa)^{-0.8}) \frac{E_{51}^{0.9} R_{12}}{(M / M_{sun})^{0.7}} \text{ erg s}^{-1};$ $f_T = T_{\text{therm.-depth}} / T_{\text{eff.}} \approx 1.2 (\kappa_{\text{abs.}} / \kappa_{\text{abs.OP}})^{-1/8};$

Measure *R* (from *T*), $/M(@ \delta M = 0.003 M_{\odot})$

¹ [Rabinak & Waxman 2011]

The End