Magnetars and Gamma-Ray Bursts

Níccolo' Bucciantíní

1

INAF Osservatorio Astrofisico di Arcetri

http://www.arcetri.astro.it

B.D. Metzger, E. Quataert, T.A. Thomspon, D.Giannios, L.Del Zanna

16/03/2012

N. Bucciantini: IAU 279 Nikko 2012

Outline

- Millisecond magnetar energetics and GRB dynamics
- How magnetars can drive LGRBs.
- Numerical results
- Late time activity
- **Diversity**
 - SN energization
- Constraints and validation of the magnetar model
- Short GRBs with extended emission

The Proto-magnetar idea: energy,

PNS with Magnetars fields ~ 10^{14-15} G They might be born as fast rotators *Efficient dynamo implies P* ~ t_{conv} ~ ms

Pro

NS are naturally associated to core collapse SN Less angular momentum required than BH-AD NS population can explain transition from asymmetric SNe to XRFs to GRBs Magnetar can show energetic bursts Millisecond magnetar have the correct energy $E_{Rot} \approx 2 \times 10^{52} \left(\frac{P}{1 \text{ ms}}\right)^{-2} \text{ ergs}$

Typical spin-down times are ~
100-1000 sec
∴

$$\dot{E} \approx 10^{49} \left(\frac{P}{1 \text{ ms}}\right)^{-4} \left(\frac{B_{\text{Dip}}}{10^{15} \text{ G}}\right)^2 \text{ ergs s}^{-1}$$

The Proto-magnetar idea: energy,

PNS with Magnetars fields ~ 10^{14-15} G They might be born as fast rotators *Efficient dynamo implies P* ~ t_{conv} ~ ms

Pro

NS are naturally associated to core collapse SN Less angular momentum required than BH-AD NS population can explain transition from asymmetric SNe to XRFs to GRBs Magnetar can show energetic bursts Millisecond magnetar have the correct energy $E_{Rot} \approx 2 \times 10^{52} \left(\frac{P}{1 \text{ ms}}\right)^{-2} \text{ ergs}$

Typical spin-down times are ~
100-1000 sec

$$\dot{E} \approx 10^{49} \left(\frac{P}{1 \text{ ms}}\right)^{-4} \left(\frac{B_{\text{Dip}}}{10^{15} \text{ G}}\right)^2 \text{ ergs s}^{-1}$$

The Proto-magnetar idea: energy,

PNS with Magnetars fields ~ 10^{14-15} G They might be born as fast rotators *Efficient dynamo implies P* ~ t_{conv} ~ ms

Pro

NS are naturally associated to core collapse SN Less angular momentum required than BH-AD NS population can explain transition from asymmetric SNe to XRFs to GRBs Magnetar can show energetic bursts

Pulsars have relativistic winds

Millisecond magnetar have the correct energy $E_{Rot} \approx 2 \times 10^{52} \left(\frac{P}{1 \text{ ms}}\right)^{-2} \text{ ergs}$

Typical spin-down times are ~
100-1000 sec
$$\dot{E} \approx 10^{49} \left(\frac{P}{1 \text{ ms}}\right)^{-4} \left(\frac{B_{\text{Dip}}}{10^{15} \text{ G}}\right)^2 \text{ ergs s}^{-1}$$

Faintest Cluster Members are O7 (Muno 2006)

16/03/2012

N. Bucciantini: IAU 279 Nikko 2012

and the death of the progenitor.

16/03/2012

N. Bucciantini: IAU 279 Nikko 2012

Extracting the energy via winds

Core-Collapse SNe Produce Hot Proto-Neutron Stars that Cool Via v-Emission ~10⁵³ ergs in τ_{KH} ~ 10-100 s

Neutrinos Heat Matter above the PNS Surface, Driving a Thermal Wind into the Evacuated Region Behind the SN Shock (Duncan et al. 1986).

16/03/2012

Extracting the energy via winds

Core-Collapse SNe Produce Hot Proto-Neutron Stars that Cool Via v-Emission ~10⁵³ ergs in τ_{KH} ~ 10-100 s

Neutrinos Heat Matter above the PNS Surface, Driving a Thermal Wind into the Evacuated Region Behind the SN Shock (Duncan et al. 1986).

Regular PNS winds are not dynamically relevant for SN

16/03/2012

Extracting the energy via winds

Core-Collapse SNe Produce Hot Proto-Neutron Stars that Cool Via v-Emission ~10⁵³ ergs in τ_{KH} ~ 10-100 s

Neutrinos Heat Matter above the PNS Surface, Driving a Thermal Wind into the Evacuated Region Behind the SN Shock (Duncan et al. 1986).

16/03/2012

16/03/2012

16/03/2012

16/03/2012

16/03/2012

Geometry of the Outflow

Komissarov 2005

Bucciantini et al 2005

Geometry of the Outflow

What about the interaction with the progenitor?

How do relativistic winds interact with the environment?

16/03/2012

16/03/2012

Interaction with the progenitor

Recent numerical study investigates the transition from the matter dominated phase to the magnetic dominated phase

Jet are ubiquitous feature originating from the confinement of a toroidally dominated magnetic field.

Dissipative processes affect the acceleration of the jet but not the collimation

Interaction with the progenitor

Recent numerical study investigates the transition from the matter dominated phase to the magnetic dominated phase

Jet are ubiquitous feature originating from the confinement of a toroidally dominated magnetic field.

Dissipative processes affect the acceleration of the jet but not the collimation

Jet at large distances

Most of the energy is carried by the relativistic core of the jet

16/03/2012

PNS SN coupling

Comparison of the losses for a free-wind case and the case of a PNS confined inside a SN progenitor.

Losses are not changes by confinement, same torque, free wind model for PNS evolution are reliable

The PNS wind does not efficiently powers the SN

PNS SN coupling

Comparison of the losses for a free-wind case and the case of a PNS confined inside a SN progenitor.

Losses are not changes by confinement, same torque, free wind model for PNS evolution are reliable

The PNS wind does not efficiently powers the SN

MHD jets at 1s AB produce ~no Ni

Late activity

Validating the model

Validating the model

Validating the model

16/03/2012

GRB true energetics

16/03/2012

N. Bucciantini: IAU 279 Nikko 2012

16/03/2012

N. Bucciantini: IAU 279 Nikko 2012

EE and LGRBs

Table 1 Prompt Emission Properties of Swift SGRBs and Candidate SGRBs

GRB	Class Ambiguous?	Z	$S_{\rm EE}/S_{\rm spike}$
050509B	N	0.2249	< 14.3
050724	Ν	0.258	2.64 ± 0.49
050813	Ν	0.722?	< 3.64
050906	Y ^a		< 14.87
050911	Y ^{bc}	0.1646?	1.31 ± 0.43
050925	Y ^d		< 1.83
051105A	Ν		< 8.06
051210	Y ^b	0.114?	2.72 ± 1.33
051221A	Y ^b	0.5465	< 0.16
051227	Y ^b		2.87 ± 0.677
060313	Ν		< 0.29
060502B	Ν	0.287?	< 3.45
060801	Ν	1.131?	< 1.84
060614	Y ^{be}	0.125	6.11 ± 0.25
061006	Y ^b	0.4377	1.75 ± 0.26
061201	Ν	0.111?	< 0.71
061210	Ν	0.41?	2.81 ± 0.63
061217	Ν	0.827	< 3.81
070209	Ν		< 8.08
070429B	Ν	0.904	< 2.44
070714B	Ν	0.92	0.477 ± 0.163
070724A	Ν	0.457	< 4.24
070729	Ν		< 2.16
070731	Y ^b		< 1.37
070809	Y ^b	0.219?	< 1.37
070810B	Ν		< 9.40
070923	Ν		< 5.96
071112B	Ν		< 4.14
071227	Y ^b	0.383	$1.56\pm0.49^{\rm f}$
080503	Y ^e		32.41 ± 5.7

The fluence of the EE is comparable or bigger that the initial spike

EE dominates the energetics of the event

Perley et al 2009

16/03/2012

;

EE and LGRBs

GRB	Class Ambiguous?	z	$S_{\rm EE}/S_{\rm spike}$
050509B	Ν	0.2249	< 14.3
050724	Ν	0.258	2.64 ± 0.49
050813	Ν	0.722?	< 3.64
050906	Y ^a		< 14.87
050911	Y ^{bc}	0.1646?	1.31 ± 0.43
050925	$\mathbf{Y}^{\mathbf{d}}$		< 1.83
051105A	Ν		< 8.06
051210	Y ^b	0.114?	2.72 ± 1.33
051221A	Y ^b	0.5465	< 0.16
051227	Y ^b		2.87 ± 0.677
060313	Ν		< 0.29
060502B	Ν	0.287?	< 3.45
060801	Ν	1.131?	< 1.84
060614	Y ^{be}	0.125	6.11 ± 0.25
061006	Y ^b	0.4377	1.75 ± 0.26
061201	Ν	0.111?	< 0.71
061210	Ν	0.41?	2.81 ± 0.63
061217	Ν	0.827	< 3.81
070209	Ν		< 8.08
070429B	Ν	0.904	< 2.44
070714B	Ν	0.92	0.477 ± 0.163
070724A	Ν	0.457	< 4.24
070729	Ν		< 2.16
070731	Y ^b		< 1.37
070809	Y ^b	0.219?	< 1.37
070810B	Ν		< 9.40
070923	Ν		< 5.96
071112B	Ν		< 4.14
071227	Y ^b	0.383	$1.56\pm0.49^{\rm f}$
080503	Y ^e		32.41 ± 5.7

EE has same properties in HR - duration that LGRBs. EE along would be classified as LGRBs

The fluence of the EE is comparable or bigger that the initial spike

EE dominates the energetics of the event

Perley et al 2009

SGRBEEs & Magnetar

Dynamics of the outflow

ejecta and the PNS luminosity

Dynamics of the outflow

A model light-curve

PNS cannot be too energetic if collimation is needed

PNS cannot be too weak if the flow has to become optically thin fast enough to avoid thermalization

The lull can be due either to a buried jet or to the still optically thick outflow

The EE is terminated once the PNS wind becomes leptonic dominated

Conclusions

Conclusions

Thank you