Polarization Study of Astronomical Hard X-rays with Well-type Phoswich Compton Polarimeter

Tuneyoshi (Tune) Kamae (SLAC) for the collaboration (SLAC-Goddard-Princeton-Japan-Sweden-France)

Introduction Conceptual Design of the Instrument Possible Targets of the Instrument On-Going R/D Summary

Introduction: Polarization in X-ray astronomy

Photons are characterized by 3 quantities: direction, energy, polarization

- > Direction: Spatial resolution of X-ray instrument
 - 1978 Einstein: 1 arcmin
 - **1990 ROSAT: 30 arcsec**
 - 1999 Chandra: 0.3 arcsec
 - 1999 XMM: 4.3 arcsec
- Sensitivity for point source detection of X-ray instrument
 - 1978 Einstein (survey, 0.2-3.5keV): 10**(-11)erg/cm**2/s
 - 1990 ROSAT (survey, 0.5-2.5keV): 10**(-13)erg/cm**2/s
 - 1999 Chandra (100ks, 0.5-2.0keV): 2.3x10**(-16)erg/cm**2/s
 - 1999 XMM (100ks, 0.1-2.4keV): 2.7x10**(-15)erg/cm**2/s
- **Energy: Spectral resolution of X-ray instruments**
 - 1999 Chandra: 1-10eV or 1/(100-1000)
 - 1999 XMM: 1-10eV or 1/(100-800)
- > Polarization: <u>No measurement since 1975/6 in the X-ray band</u>
 - 1976 OSO-8: Crab total at 2.6 and 5.2keV

Crab Polarization Measurements with OSO-8 (1976) (1/5) by a Columbia group (Weisskopf et al.)

THE ASTROPHYSICAL JOURNAL, 208:L125-L128, 1976 September 15 © 1976. The American Astronomical Society. All rights reserved. Printed in U.S.A.

MEASUREMENT OF THE X-RAY POLARIZATION OF THE CRAB NEBULA

M. C. WEISSKOPF, G. G. COHEN, H. L. KESTENBAUM, K. S. LONG, R. NOVICK, AND R. S. WOLFF Columbia Astrophysics Laboratory, Columbia University Received 1976 June 7

ABSTRACT

The graphite crystal X-ray polarimeters aboard the OSO-8 satellite were used to observe the Crab Nebula for six days from 1976 March 11 through March 17 (UT). Analysis of 15 orbits of quick-look data shows that the polarization and position angles at 2.6 and 5.2 keV are (15.7 ± 1.5) percent at $161^{\circ}1 \pm 2^{\circ}8$ and (18.3 ± 4.2) percent at $155^{\circ}5 \pm 6^{\circ}6$, respectively. These results confirm the previous measurement and the hypothesis of synchrotron X-ray emission. Subject headings: nebulae: Crab Nebula — polarization — X-rays: sources

A PRECISION MEASUREMENT OF THE X-RAY POLARIZATION OF THE CRAB NEBULA WITHOUT PULSAR CONTAMINATION

M. C. WEISSKOPF, E. H. SILVER, H. L. KESTENBAUM, K. S. LONG, AND R. NOVICK Columbia Astrophysics Laboratory, Columbia University Received 1977 November 15; accepted 1977 December 22

ABSTRACT

The linear X-ray polarization of the Crab Nebula has been precisely measured at 2.6 keV and 5.2 keV with the OSO 8 graphite crystal polarimeters. The 1.4 ms time resolution of these instruments permitted the removal of any contribution to the polarization from the pulsar. The nebular polarization is $19.2\% \pm 1.0\%$ at a position angle of 156.4 ± 1.4 at 2.6 keV. At 5.2 keV the corresponding results are $19.5\% \pm 2.8\%$ at 152.6 ± 4.0 .

Subject headings: nebulae: Crab Nebula - polarization

Crab Polarization Measurements with OSO-8 (1976) (2/5) by a Columbia group (Weisskopf et al.)

Crab Polarization Measurements with OSO-8 (1976) (3/5) by a Columbia group (Weisskopf et al.)

Crab Polarization Measurements with OSO-8 (1976) (4/5) by a Columbia group (Weisskopf et al.)

FIG. 1.—Crab pulsar light curves for (a) first-order (2.6 keV)and (b) second-order (5.2 keV) Bragg reflections. The horizontal bar in each light curve indicates the unpulsed portion of the light curve.

FIG. 2.—Average modulation curves obtained with both detectors at 2.6 keV during (*upper curve*) observations of the Crab Nebula and during (*lower curve*) observations of the Earthocculted instrumental background.

Crab Polarization Measurements with OSO-8 (1976) (5/5) by a Columbia group (Weisskopf et al.)

Introduction: Compton scattering kinematics

Energy of the scattered photon as a function of the incident energy for theta=60(blue dash), 90(red solid), 120deg(green dot-dash).

Energy of the recoil electron vs. the incident energy for the 3 theta's.

Introduction: Modulation factor of Compton scatt.

Fig.5-3 Modulation factor of Compton scattering vs. the incident energy: scattering angle (theta)=60deg(blue dash), 75deg(green dot-dash), 90deg(red solid), 105deg(purple dot-dash), 120deg(magenta dash).

Introduction: Key parameters of the instrument

"Sample Design":

Measure 10% pol of 100mCrab sources in one 6hr balloon experiment
Reach highest altitude practical to extend energy range to 20keV
Reduction of background to ~10mCrab level
Plastic scintillator as the Compton scatter

Energy band	25-200keV
Geometric area	1787cm**2
Effective area for pol measurement (average)	288cm**2
Instrumental background (at 50keV)	~10mCrab
Modulation factor for 100% polarized X-rays	36%
Sensitivity to polarization (1sigma)	2.1%

Introduction: Processes known to polarize hard X-rays

Synchrotron process: Electrical vector is perpendicular to the magnetic field and hence polarization measurement determines the direction of magnetic field.

Re-scattered via Compton scattering: Electric vector is perpendicular to the plane of scattering and hence polarization measurement determines the geometrical relation between the photon source and the scatterer.

Propagation of photons in strong magnetic field: Magnitude of polarization depends on the energy of photons. Photons with electric vector perpendicular to the magnetic field are highly absorbed and hence polarization measurement determines the direction and magnitude of the magnetic field.

> In many astronomical objects, these potentially polarizing processes coexist with other processes.

Introduction: Polarized X-rays sources

➤<u>Super-massive black holes</u> where matter accretion powers relativistic jets, accelerates particles, and emits photons via synchrotron and inverse-Compton mechanisms;

➤ Galactic X-ray binaries where matter accretes onto a black hole or a neutron star and emits hard X-rays. Inverse-Compton reflection off the accretion disk polarizes hard X-rays. Micro-quasars belong to this category, where the

accretion is likely to be powering stellar-scale relativistic jets;

><u>Active galaxies</u> where isotropic emission is scattered toward the Earth by

inverse-Compton scattering;

Accreting neutron stars with strong cyclotron line features;

➢Hard X-ray emission from Soft Gamma-ray Repeaters with super-critical magnetic fields;

➤<u>Isolated pulsars</u> with strong magnetic field;

Ordinary galaxies (including our own) with extended inverse Compton halo;

≻<u>Solar flares and coronae</u>.

- Photoelectron asymm vs. Compton scatt. -

	Photoelectron asymm	Compton scattering
Energy range	3.5 - 10keV	20 - 200 keV
Good S/N by	•X-ray mirror	•Active shield
	•Fine tracking	•Coarse segmentation
Main bkg •Thermal emission from the		 Source confusion in FOV
	source	•Cosmic ray background
Mod factor	~40%	~40-80%
Platform	Satellite	Balloon
		Satellite
Merit	•Fine imaging	•Optimal to pol. processes
		•Simple and robust
		•Cost-effective
Demerit	•Require intensive care	•No image
	•Heavy on data processing	

Conceptual Design of the Instrument - **Basic strategy** -

Fig. of merit = Expected modulation factor x Expected S/N

From the pioneering experiment by Weisskopf et al., we learn that the fig. of merit defined above must be >>1 to make a reliable measurements. This implies:

- Maximize modulation factor
- Maximize S/N ratio
- > Fly high (>45km) to extend the energy coverage as low as possible
- > Service-free instrument to stay ready upon flare alerts

> Maximizing effective area is less important than the above.

Conceptual design of the instrument (number of units will be greater than shown here): a) Isometric view; (b) View from the front of the instrument; (c) Vertical cross-section of the instrument. The proposed instrument will have ~400 units and L1 + L2 in (c) will be ~60cm.

Heritage from Welcome-1 and Astro-E HXD (1/2)

<u>Heritage from the balloon instrument Welcome-1 flown 4 times in Brazil</u>

(b) Compound-Eye Configuration Detector "Welcome-1"

Counter (First model)

Heritage: from Welcome-1 and Astro-E HXD

Lowest background ever achieved in the hard X-ray band

Welcome-1: A series of balloon experiments in Brazil •Upper limit to Co57 from SN1997A First detection in hard **X-ray of PSR 1509 Detection of H.E.** cutoff of CenA •First detection of inv. **Compton component in** high latitude Galactic diffuse emission

Trigger and Pulse-Shape-Discrimination

36% averaged over 100mCrab

Effective area and modulation factor

Incident Energy (keV)

Background will be quite low: 1/10 of Welcome-1

"Sample Design" of the Instrument

Detector Parameters	Choices
Width of Well Unit: D in Fig.5-1	2.68cm by compromise btwn effective area and cost (Fig.3-4)
Length of fast plastic scintillator: L2 in Fig.5-1	15-20cm by photon yield and weight
Length of slow plastic scintillator: L1 in Fig.5-1	40cm by req. for background & source confusion
Material and thickness of High-Z Foil	Pb (cheap and flexible), 50um (see Fig.5-4)
Thickness of BGO: L3 in Fig.5-1	3cm by by requirement for background (see Fig.5-4)
Material and thickness of Anti-Counters	BGO , 3cm (see Fig.5-4)
Number of Well Units	397 compromise among effective area, weight, and cost
PMT: New hex PMT or existing circular PMT	Compromise between photo-electron yield and cost

<u>Jet-dominated active galaxies</u> High Frequency Peak BL Lac Objects (HBL)

Flares last ~1-2 weeks.

Need notification by a survey mission, eg. GLAST-LAT

Accreting Galactic Black Holes and Neutron Stars Accreting black hole in hard state

Cygnus X-1 hard state: stays in the hard state for a few months to a few years

Accreting Galactic Black Holes and Neutron Stars Microquasar in hard state

10 Hard state E F_s [keV cm⁻² s⁻¹] GRS 1915+105 B/γ 10 C/χ 0.1 $F_{\rm E}$ [keV cm⁻² s⁻¹] reflection - i ++++++|||| +++++++ 1 (b) E F_g [keV cm⁻² s⁻¹] 10 Det. limit (3 sig. for 10% pol. ы Soft state 0.10.1 1000 10 100 1 E [keV] 1000 104 1 10 100 E [keV]

Model analysis by Zdziarski et al.

Isotropic emission from AGN

Compton reflection of the hidden central engine

Isolated and X-ray binary pulsars Isolated pulsars

Analysis of pol. in optical band by Chen et al.

Crab Polarization Measurements with OSO-8 (Pulsar 1/3) by a Columbia group (Weisskopf et al.)

THE ASTROPHYSICAL JOURNAL, 225:221-225, 1978 October 1 © 1978. The American Astronomical Society. All rights reserved. Printed in U.S.A.

SEARCH FOR X-RAY POLARIZATION IN THE CRAB PULSAR

E. H. SILVER, M. C. WEISSKOPF, H. L. KESTENBAUM, K. S. LONG, R. NOVICK, AND R. S. WOLFF Columbia Astrophysics Laboratory, Columbia University Received 1978 March 20; accepted 1978 April 10

ABSTRACT

The Crab pulsar was observed at both 2.6 keV and 5.2 keV with the X-ray polarimeters aboard the OSO 8 satellite. A polarization analysis was performed for various portions of the pulsar light curve, and the polarization contributed by the Crab Nebula was removed. Although there is marginal evidence that the X-ray and optical polarization position angles are similar, no evidence for polarization was obtained at the 3 σ confidence level. Upper limits for the polarization of the pulsar are given in this paper.

Subject headings: polarization — pulsars — X-rays: sources

Crab Polarization Measurements with OSO-8 (Pulsar 2/3) by a Columbia group (Weisskopf et al.)

	Parameter	Total Pulse	Central Pulse	Leading Edge	Trailing Edge
_			A. Primary Pulse		
1.	X-ray polarization:†				
	Pulse phase bins	8-11	9–10	8-9	10-11
	R (counts s ⁻¹ × 10 ³)	96.64 ± 3.15	132.69 ± 4.45	105.69 ± 4.41	87.60 ± 4.41
	Q (%)	$+3.9 \pm 5.0$	$+3.2 \pm 5.1$	-1.6 ± 6.4	$+10.6 \pm 18.4$
	U(%)	-0.3 ± 5.0	-1.6 ± 5.1	-5.3 ± 6.4	-7.1 ± 18.4
	Polarization $P(\%)$	3.9(+7.4, -3.9)	3.5(+7.6, -3.5)	5.5 (+9.4, -5.5)	12.7(+27.3, -12.7)
	Position angle ϕ (deg)	177.6(+2.4, -177.6)	166.7(+13.3, -166.7)	53.6(+126.4, -53.6)	125.4 (+54.6, -125.4)
	11	0.73	0.78	0.69	0.79
2		18.9	19.0	24.8	36.0
4.	Polarization P(97)	9.0	77	12.9	1.27
	Position angle ϕ (deg)	96.12	103.1	13.0	118 10
_	Tosition angle \$ (deg)	50.12	105.1	55.0	110.10
			B. Interpulse		
1.	X-ray polarization:		-		
	Pulse phase bins	25-29	26-28	25-26	28-29
	R (counts s ⁻¹ × 10 ³)	65.94 ± 2.95	77.63 ± 3.78	61.89 ± 4.50	57.36 ± 4.38
	Q(%)	-11.1 ± 6.8	-11.8 ± 7.4	-16.0 ± 11.1	-8.1 ± 11.6
	U(%)	$+3.2 \pm 6.8$	-8.1 ± 7.4	-8.4 ± 11.1	$+25.1 \pm 11.6$
	Polarization $P(\%)$	11.5 ± 9.1	14.3 ± 11.0	18.1 ± 15.3	26.4 ± 17.3
	Position angle ϕ (deg)	81.9 ± 19.2	107.2 ± 18.8	103.8 ± 20.1	54.0 ± 16.6
	11	0.23	0.16	0.26	0.08
~	P* (%)	32.1	36.8	51.6	61.6
2.	Optical polarization:	0.05	0.04	14.22	4.00
	Polarization P (%)	8.85	9,94	14.32	4.80
	Position angle ϕ (deg)	93.6	94.1	89.86	98.64

TABLE 1 POLARIZATION OF THE PRIMARY PULSE AND INTERPULSE AT 2.6 keV

† The pulse phase bins are referred to Fig. 1. The remaining parameters for the X-ray polarization measurements are identified in the text.

[‡] The optical polarization measurements are from Ferguson *et al.* 1974, analyzed over the same portions of the light curve as were the X-ray data.

Crab Polarization Measurements with OSO-8 (Pulsar 3/3) by a Columbia group (Weisskopf et al.)

FIG. 2.—The polarization vectors at 2.6 keV for the four pulse phase ranges of the primary (P) and interpulse (I): (a) total pulse, (b) central pulse, (c) leading edge, and (d) trailing edge. Surrounding the vectors in order of increasing size are the 67% and 99% confidence contours. The radial scale is the polarization in percent.

Isolated and X– ray Binary Pulsars Binary pulsars with Cyclotron Res. and Scattering Feature (CRSF)

On-Going R/D: No.1

<u>Light yield</u> <u>of plastic scintillator</u> •Minimum triggerable Energy >5keV

On-Going R/D: No.2

<u>Light yield of plastic scintillator</u> Minimum detectable energy <3keV

1.2keV 5.9keV

On-Going R/D: No.3

<u>Avalanche photodiode</u> Minimum triggerable energy <10keV Minimum detectable energy ?

Summary

Plastic well-type phoswich Compton polarimeter can detect 10% polarization in 50mCrab sources in a 6hr balloon flight.

- > Many interesting targets are in the northern sky.
- ▶ Low maintenance: Can fly it within a week of flare alerts.

> Several upgrade possibilities: a satellite mission, several long-duration balloon experiments.

Crab Pulsar	(5h34m32s, +22d0m52s)	<u>NGC4151</u>	(12h10m33s, +39d24m20s)
<u>GS2023+338</u>	(20h24m44, +33d52m2s)	<u>Her X-1</u>	(16h57m50s, +35d20m33s)
<u>GS2000+25</u>	(20h2m49s, +25d14m11s)	Cen X-3	(11h21m15s, -60d37m24s)
GS1124-683	(11h26m45s, -68d24m31s)	Vela X-1	(9h2m6.9s, -40d33m17s)
<u>A0620-00</u>	(6h22m45s, -0d20m44s)	<u>4U0115+63</u>	(1h18m31.9s, +63d44m24s)
Cygnus X-1	(19h58m22s, +35d12m06s)	4U1626-67	(16h32m17s, -67d27m43s)
<u>Mrk501</u>	(16h53m52s, +39d45m37s)	<u>XTEJ1946+274</u>	(19h45m34s,+27d23m0s)
<u>GRS1915+105</u>	(19h15m12s, +10d56m44s)		
GX339-4	(17h02m50s, -48d47m23s)		
NGC4945	(13h5m26s, -49d28m15s)		